В какую сторону движется луна вокруг земли. Основные сведения о Луне

В разделе на вопрос Какая скорость вращения Луны вокруг Земли? заданный автором шеврон лучший ответ это Орбитальная скорость1,022 км/с
Движение Луны
В первом приближении можно считать, что Луна двигается по эллиптической орбите с эксцентриситетом 0,0549 и большой полуосью 384 399 км. Реальное движение Луны довольно сложно, при его расчёте необходимо учитывать множество факторов, например, сплюснутость Земли и сильное влияние Солнца, которое притягивает Луну в 2,2 раза сильнее, чем Земля. Более точно движение Луны вокруг Земли можно представить как сочетание нескольких движений :
вращение вокруг Земли по эллиптической орбите с периодом 27,32 сут;
прецессия (поворот плоскости) лунной орбиты с периодом 18,6 лет (см. также сарос) ;
поворот большой оси лунной орбиты (линии апсид) с периодом 8,8 лет;
периодическое изменение наклона лунной орбиты по отношению к эклиптике от 4°59′ до 5°19′;
периодическое изменение размеров лунной орбиты: перигея от 356,41 Мм до 369,96 Мм, апогея от 404,18 Мм до 406,74 Мм;
постепенное удаление Луны от Земли (примерно на 4 см в год) так, что её орбита представляет собой медленно раскручивающуюся спираль . Это подтверждают измерения, проводившиеся на протяжении 25 лет.

Ответ от Прососаться [новичек]
Вот же умники википедийные елки палки. Понакопировали из всяких википедий различной зауми и даже отсылки на внуренние ресурсы типа "-" или "(см так же сарос)" не потрудились удалить. Элиптическая орбита ещё куда не шло, но вот эксцентриситет 0,0549 или большая полуось в 384 399 километров это уже перебор.
Ну написали бы что Луна движется вокруг нашей планеты по довольно вытянутой эллиптической орбите и совершает довольно сложные эволюционные движения и либрации, то бишь медленные колебательные движения хорошо заметные при наблюдении с Земли. Средняя орбитальная скорость земного спутника составляет 1,023 км/с или 3682,8 километров в час. Вот и всё.


Ответ от Просып [новичек]
1.022


Ответ от Ђони Тунофф [новичек]
Луна движется по орбите вокруг Земли со скоростью 1,02 км в сек. Если Луна вращается вокруг оси с такой же скоростью, то разделив длину экватора Луны на скорость 1,02 км в сек, мы узнаем время 1 оборота Луны вокруг оси в секундах. Длина экватора Луны равна 10920,166 км.

Можно сказать, что на первый взгляд Луна просто движется вокруг планеты Земля с определенной скоростью и по определенной орбите.

В реальности это очень сложный трудноописуемый с научной точки зрения процесс движения космического тела, протекающий под воздействием множества различных факторов. Таких, например как, форма Земли, если мы помним из школьной программы, она немного сплюснута, а так же очень сильно влияет то, что например, Солнце притягивает ее в 2,2 раза сильнее, чем наша родная планета.

Снимки космического аппарата Deep Impact последовательность перемещения Луны

При этом производя точные расчеты движения, необходимо так же учитывать, что посредством приливного взаимодействия Земля передает Луне момент импульса вращения, тем самым создавая силу, заставляющую ее отдаляться от себя. При этом гравитационное взаимодействие данных космических тел является не постоянным и с увеличением расстояния оно уменьшается, приводя к уменьшению и скорость удаления Луны. Вращение Луны вокруг Земли относительно звёзд называется сидерическим месяцем и равен 27,32166 суток.

Почему она светится?

Вы не задавались вопросом, почему иногда мы видим только часть Луны? Или почему она светится? Давайте разберёмся в этом! Спутник отражает лишь 7% солнечного света падающего на нее. Это происходит, потому что в период бурной активности Солнца лишь отдельные участки ее поверхности способны поглощать и накапливать солнечную энергию, а после слабо излучать ее.

Пепельный свет — отраженный свет от Земли

Сама по себе она не может светиться, а способна лишь отражать свет Солнца. Поэтому мы видим только ту ее часть, которую ранее осветило Солнце. Данный спутник движется по определенной орбите вокруг нашей планеты и угол между ним, Солнцем и Землей постоянно меняется, в результате мы и видим различные фазы Луны.

Инфографика «Фазы Луны»

Время между новолуниями составляет 28,5 дня. То, что один месяц длиннее другого можно объяснить движением Земли вокруг Солнца, то есть когда спутник делает полный оборот вокруг Земли, сама планета в этот момент продвигается на 1/13 часть вокруг своей орбиты. И что бы Луна снова была между Солнцем и Землей ей нужно еще около двух суток времени.

Несмотря на то, что она постоянно вращается вокруг своей оси, она всегда смотрит на Землю одной и той же стороной, это значит, что вращение, которое она совершает вокруг собственной оси и вокруг самой планеты синхронно. Эта синхронность вызвана приливами.

Обратная сторона

Обратная сторона

Наш спутник вращается вокруг собственной оси равномерно, а вокруг Земли согласно определенному закону, суть которого состоит в следующем: данное движение неравномерно — вблизи перигея оно быстрее, а вот вблизи апогея чуть медленнее.

Иногда возникает возможность взглянуть на оборотную сторону Луны, если вы находитесь на востоке или, например на западе. Это явление носит название оптической либрацией по долготе, существует еще и оптическая либрация по широте. Она возникает из-за наклона лунной оси относительно Земли, и наблюдать это можно на юге и севере.

Землю нередко и не без основания называют двойной планетой Земля-Луна. Луна (Селена, в греческой мифологии богиня Луны), наша небесная соседка, первой подверглась непосредственному изучению.

Луна – природный спутник Земли, находящийся от нее на расстоянии 384 тыс. км (60 радиусов Земли). Средний радиус Луны 1738 км (почти в 4 раза меньше земного). Масса Луны составляет 1/81 массы Земли, что значительно больше, чем подобные отношения у других планет Солнечной системы (кроме пары Плутон–Харон); поэтому систему Земля–Луна считают двойной планетой. Она имеет общий центр тяжести – так называемый барицентр, который находится в теле Земли на расстоянии 0,73 радиуса от ее центра (1700 км от поверхности Океана). Вокруг этого центра вращаются оба составляющих системы, и именно барицентр совершает движение по орбите вокруг Солнца. Средняя плотность лунного вещества 3,3 г/см 3 (земного – 5,5 г/см 3). Объем Луны в 50 раз меньше Земли. Сила лунного притяжения в 6 раз слабее земного. Луна вращается вокруг своей оси, из-за чего немного сплюснута у полюсов. Ось вращения Луны составляет с плоскостью лунной орбиты угол 83°22". Плоскость орбиты Луны не совпадает с плоскостью орбиты Земли и наклонена к ней под углом 5°9". Места пересечения орбит Земли и Луны называют узлами лунной орбиты.

Орбита Луны представляет собою эллипс, в одном из фокусов которого находится Земля, поэтому расстояние от Луны до Земли меняется от 356 до 406 тыс. км. Период орбитального обращения Луны и соответственно одинакового положения Луны на небесной сфере называют сидерическим (звездным) месяцем (лат. sidus, sideris (род. п.) – звезда). Он составляет 27,3 земных суток. Сидерический месяц совпадает с периодом суточного вращения Луны вокруг оси из-за их одинаковой угловой скорости (ок. 13,2° в сутки), установившейся по причине тормозящего воздействия Земли. Из-за синхронности этих движений Луна обращена к нам всегда одной стороной. Однако мы видим почти 60% ее поверхности благодаря либрации – кажущемуся покачиванию Луны вверх-вниз (из-за несовпадения плоскостей лунной и земной орбит и наклона оси вращения Луны к орбите) и влево-вправо (ввиду того что Земля находится в одном из фокусов лунной орбиты, а видимое полушарие Луны смотрит в центр эллипса).

При движении вокруг Земли Луна занимает различные положения относительно Солнца. С этим связаны различные фазы Луны, т. е. разные формы ее видимой части. Основные четыре фазы: новолуние, первая четверть, полнолуние, последняя четверть. Линию на поверхности Луны, отделяющую освещенную часть Луны от неосвещенной, называют терминатором.

В новолуние Луна находится между Солнцем и Землей и обращена к Земле неосвещенной стороной, поэтому невидна. В первую четверть Луна видна с Земли на угловом расстоянии 90° от Солнца, а солнечные лучи освещают лишь правую половину обращенной к Земле стороны Луны. В полнолуние Земля находится между Солнцем и Луной, обращенное к Земле полушарие Луны ярко освещено Солнцем, и Луна видна как полный диск. В последнюю четверть Луна вновь видна с Земли на угловом расстоянии 90° от Солнца, а солнечные лучи освещают левую половину видимой стороны Луны. В промежутках между этими основными фазами Луна видна то в виде серпа, то как неполный диск.

Период полной смены лунных фаз, т. е. период возвращения Луны в первоначальное положение относительно Солнца и Земли, называют синодическим месяцем. Он составляет в среднем 29,5 средних солнечных суток. В течение синодического месяца на Луне один раз происходит смена дня и ночи, продолжительность которых =14,7 суток. Синодический месяц более чем на двое суток больше сидерического. Это результат того, что направление осевого вращения Земли и Луны совпадает с направлением орбитального движения Луны. Когда Луна за 27,3 суток совершит полный оборот вокруг Земли, Земля по своей орбите вокруг Солнца продвинется примерно на 27°, так как ее угловая орбитальная скорость около 1° в сутки. При этом Луна займет то же положение среди звезд, но не будет в фазе полнолуния, так как для этого ей надо продвинуться по своей орбите еще на 27° за «убежавшей» Землей. Поскольку угловая скорость движения Луны равна примерно 13,2° в сутки, она преодолевает это расстояние примерно за двое суток и дополнительно продвигается еще на 2° за движущейся Землей. В результате синодический месяц оказывается на двое с лишним суток больше сидерического. Хотя Луна движется вокруг Земли с запада на восток, видимое перемещение ее на небосводе происходит с востока на запад благодаря большой скорости вращения Земли по сравнению с орбитальным движением Луны. При этом во время верхней кульминации (высшей точки своего пути на небосводе) Луна показывает направление меридиана (север – юг), чем можно пользоваться для приблизительной ориентировки на местности. А так как верхняя кульминация Луны при разных фазах происходит в разные часы суток: при первой четверти – около 18 ч, во время полнолуния – в полночь, при последней четверти – около 6 ч утра (по местному времени), то этим можно пользоваться и для приблизительной оценки времени ночью.

Луна — спутник нашей планеты, с незапамятных времен притягивающий взоры ученых и просто любопытных людей. В древнем мире и астрологи, и астрономы посвящали ей внушительные трактаты. От них не отставали и поэты. Сегодня в этом смысле мало что изменилось: орбита Луны, особенности ее поверхности и недр тщательно изучаются астрономами. Составители гороскопов также не сводят с нее глаз. Влияние спутника на Землю изучается и теми и другими. Астрономы исследуют, как взаимодействие двух космических тел отражается на движении и других процессах каждого. За время изучения Луны знания в этой области значительно увеличились.

Происхождение

По исследованиям ученых, Земля и Луна образовались примерно в одно время. Возраст обоих тел составляет 4,5 миллиарда лет. Существует несколько теорий происхождения спутника. Каждая из них объясняет отдельные особенности Луны, но оставляет несколько нерешенных вопросов. Наиболее близкой к истине сегодня считается теория гигантского столкновения.

Согласно гипотезе, планета, по своим размерам сходная с Марсом, столкнулась с молодой Землей. Удар пришелся по касательной и стал причиной выброса в космос большей части вещества этого космического тела, а также некоторого количества земного «материала». Из этого вещества и сформировался новый объект. Радиус орбиты Луны первоначально составлял шестьдесят тысяч километров.

Гипотеза гигантского столкновения хорошо объясняет многие особенности строения и химического состава спутника, большинство характеристик системы Луна-Земля. Однако, если брать теорию за основу, все же остаются непонятными некоторые факты. Так, дефицит железа на спутнике можно объяснить лишь тем, что ко времени столкновения на обоих телах произошла дифференциация внутренних слоев. На сегодняшний день нет доказательств, что подобное имело место. И тем не менее, несмотря на подобные контраргументы, гипотеза гигантского столкновения считается основной во всем мире.

Параметры

Луна, как и большинство других спутников, не имеет атмосферы. Обнаружены лишь следы кислорода, гелия, неона и аргона. Температура поверхности на освещенных и затемненных участках поэтому сильно отличается. На солнечной стороне она может подниматься до +120 ºС, а на темной опускаться до -160 ºС.

Среднее расстояние между Землей и Луной составляет 384 тысячи км. По форме спутник — практически идеальный шар. Разница между экваториальным и полярным радиусом небольшая. Они составляют 1738,14 и 1735,97 км соответственно.

Полный оборот Луны вокруг Земли занимает чуть больше 27 дней. Движение спутника по небу для наблюдателя характеризуется сменой фаз. Время от одного полнолуния до другого несколько больше указанного периода и составляет примерно 29,5 дней. Разница возникает потому, что Земля и спутник также движутся вокруг Солнца. Луне, чтобы оказаться в первоначальном положении, приходится преодолевать чуть больше одного круга.

Система «Земля-Луна»

Луна — спутник, несколько отличающий от остальных подобных объектов. Главная его особенность в этом смысле — это масса. Она оценивается в 7,35*10 22 кг, что составляет примерно 1/81 от аналогичного параметра Земли. И если сама масса не является чем-то из ряда вон выходящим на космических просторах, то ее соотношение с характеристикой планеты нетипично. Как правило, отношение масс в системах «спутник-планета» несколько меньше. Аналогичным соотношением могут похвастаться только Плутон и Харон. Эти два космические тела некоторое время назад стали характеризовать как систему двух планет. Похоже, что такое обозначение справедливо и в случае с Землей и Луной.

Движение Луны по орбите

Спутник совершает один оборот вокруг планеты относительно звезд за сидерический месяц, который длится 27 дней 7 часов и 42,2 минуты. Орбита Луны по форме представляет собой эллипс. В разные периоды спутник располагается то ближе к планете, то дальше от нее. Расстояние между Землей и Луной при этом изменяется от 363 104 до 405 696 километров.

С траекторией движения спутника связано еще одно доказательство в пользу предположения о том, что Землю со спутником необходимо рассматривать как систему, состоящую из двух планет. Орбита Луны располагается не вблизи экваториальной плоскости Земли (как это свойственно большинству спутников), а практически в плоскости вращения планеты вокруг Солнца. Угол между эклиптикой и траекторией движения спутника составляет чуть больше 5º.

Орбита движения Луны вокруг Земли подвержена влиянием многих факторов. В связи с этим определение точной траектории спутника — задача не самая простая.

Немного истории

Теория, объясняющая, как движется Луна, была заложена еще в 1747 году. Автором первых расчетов, приблизивших ученых к пониманию особенностей орбиты спутника, стал французский математик Клеро. Тогда, в далеком восемнадцатом веке, обращение Луны вокруг Земли часто выдвигалось в качестве аргумента против теории Ньютона. Расчеты, сделанные с использованием сильно расходились с видимым перемещением спутника. Клеро разрешил эту задачу.

Исследованием вопроса занимались такие известные ученые, как Даламбер и Лаплас, Эйлер, Хилл, Пюизо и другие. Современная теория обращения Луны фактически началась с работ Брауна (1923 г.). Исследования британского математика и астронома помогли устранить расхождения между расчетами и наблюдением.

Непростая задача

Движение Луны заключается в двух основных процессах: вращение вокруг оси и обращение вокруг нашей планеты. Вывести теорию, объясняющую перемещение спутника, было бы не так уж и сложно, если бы его орбита не подвергалась воздействию различных факторов. Это и притяжение Солнца, и особенности формы Земли, и других планет. Подобные воздействия возмущают орбиту и предсказать точное положение Луны в конкретный период становится трудной задачей. Для того чтобы понять, в чем тут дело, остановимся на некоторых параметрах орбиты спутника.

Восходящий и нисходящий узел, линия апсид

Как уже говорилось, орбита Луны наклонена к эклиптике. Траектории движения двух тел пересекаются в точках, названных восходящим и нисходящим узлами. Располагаются они на противоположных сторонах орбиты относительно центра системы, то есть Земли. Воображаемая прямая, которая соединяет две эти точки, обозначается как линия узлов.

Ближе всего к нашей планете спутник оказывается в точке перигея. Максимальное расстояние разделяет два космических тела, когда Луна оказывается в апогее. Прямая, соединяющая две эти точки, называется линией апсид.

Возмущения орбиты

В результате влияния на перемещение спутника сразу большого числа факторов по сути оно представляет собой сумму нескольких движений. Рассмотрим наиболее заметные из возникающих возмущений.

Первая из них — это регрессия линии узлов. Прямая, соединяющая две точки пересечения плоскости лунной орбиты и эклиптики, не зафиксирована на одном месте. Она очень медленно перемещается в направлении, противоположном (потому и называется регрессией) движению спутника. Другими словами, плоскость орбиты Луны поворачивается в пространстве. На один полный оборот ей требуется 18,6 лет.

Движется и линия апсид. Перемещение прямой, соединяющий апоцентр и перицентр, выражается в повороте плоскости орбиты в ту же сторону, куда движется Луна. Происходит это гораздо быстрее, чем в случае линии узлов. Полный оборот занимает 8,9 лет.

Кроме того, лунная орбита испытывает колебания определенной амплитуды. С течением времени изменяется угол между ее плоскостью и эклиптикой. Диапазон значений — от 4°59" до 5°17". Так же, как и в случае с линией узлов, период таких колебаний составляет 18,6 лет.

Наконец, орбита Луны меняет свою форму. Она немного вытягивается, затем снова возвращается к первоначальной конфигурации. При этом меняется эксцентриситет орбиты (степень отклонения ее формы от окружности) от 0,04 до 0,07. Изменения и возвращение в первоначальное положение занимают 8,9 лет.

Не все так просто

В сущности, четыре фактора, которые необходимо учитывать во время расчетов, — это не так уж и много. Однако ими не исчерпываются все возмущения орбиты спутника. На самом деле, каждый параметр движения Луны испытывает постоянное воздействие большого числа факторов. Все это усложняет задачу по прогнозированию точного расположения спутника. А учет всех этих параметров часто представляет собой важнейшую задачу. Например, расчет траектории движения Луны и его точность влияет на успешность миссии космического аппарата, отправленного к ней.

Влияние Луны на Землю

Спутник нашей планеты сравнительно мал, однако его воздействие хорошо заметно. Пожалуй, всем известно, что именно Луна формирует приливы на Земле. Тут сразу нужно оговориться: Солнце также вызывает похожий эффект, но из-за гораздо большего расстояния приливное воздействие светила мало ощутимо. Кроме того, изменение уровня воды в морях и океанах связано и с особенностями вращения самой Земли.

Гравитационное воздействие Солнца на нашу планету примерно в двести раз больше, чем аналогичный параметр Луны. Однако приливные силы в первую очередь зависят от неоднородности поля. Расстояние, разделяющее Землю и Солнце, сглаживает их, поэтому воздействие близкой к нам Луны более мощное (в два раза значительнее, чем в случае светила).

Приливная волна образуется на той стороне планеты, которая в данный момент обращена к ночному светилу. На противоположной стороне также возникает прилив. Если бы Земля была неподвижной, то волна двигалась бы с запада на восток, располагаясь точно под Луной. Ее полный оборот завершался бы за 27 с небольшим дней, то есть за сидерический месяц. Однако период вокруг оси составляет чуть меньше 24 ч. В результате волна бежит по поверхности планеты с востока на запад и один оборот завершает за 24 часа и 48 минут. Поскольку волна постоянно встречается с материками, она смещается вперед по направлению движения Земли и опережает в своем беге спутник планеты.

Удаление орбиты Луны

Приливная волна вызывает перемещение огромной массы воды. Это непосредственным образом влияет на движение спутника. Внушительная часть массы планеты смещается с линии, соединяющей двух тел, и притягивает к себе Луну. В результате спутник испытывает воздействие момента силы, который ускоряет ее движение.

При этом материки, набегающие на приливную волну (они движутся быстрее волны, поскольку Земля вращается с большей скоростью, чем обращается Луна), испытывают воздействие силы, тормозящей их. Это приводит к постепенному замедлению вращения нашей планеты.

В результате приливного взаимодействия двух тел, а также действия и момента импульса, спутник переходит на более высокую орбиту. При этом уменьшается скорость Луны. По орбите она начинает двигаться медленнее. Нечто похожее происходит и с Землей. Она замедляется, следствием чего является постепенное увеличение длительности суток.

Луна удаляется от Земли примерно на 38 мм в год. Исследования палеонтологов и геологов подтверждают расчеты астрономов. Процесс постепенного замедления Земли и удаления Луны начался примерно 4,5 миллиарда лет назад, то есть с момента образования двух тел. Данные исследователей свидетельствуют в пользу предположения, что раньше лунный месяц был короче, а Земля вращалась с большей скоростью.

Приливная волна возникает не только в водах мирового океана. Похожие процессы происходят и в мантии, и в земной коре. Однако они менее заметны, поскольку эти слои не столь податливы.

Удаление Луны и замедление Земли не будет происходить вечно. В конце концов, период вращения планеты сравняется с периодом обращения спутника. Луна «зависнет» над одним участком поверхности. Земля и спутник будут всегда повернуты одной и той же стороной друг к другу. Тут уместно вспомнить, что часть этого процесса уже завершена. Именно приливное взаимодействие привело к тому, что на небе всегда видна одна и та же сторона Луны. В космосе есть пример системы, пребывающей в подобном равновесии. Это уже называвшиеся Плутон и Харон.

Луна и Земля находятся в постоянном взаимодействии. Нельзя сказать, какое из тел больше влияет на другое. При этом оба подвергаются и воздействию Солнца. Значительную роль играют и другие, более удаленные, космические тела. Учет всех подобных факторов делает довольно трудной задачу точного построения и описания модели движения спутника по орбите вокруг нашей планеты. Однако огромное количество накопленных знаний, а также постоянно совершенствующая аппаратура позволяют более или менее точно спрогнозировать положение спутника в любое время и предсказать будущее, которое ожидает каждый объект в отдельность и систему Земля-Луна в целом.

Здесь, потратив немного времени на изучение интерфейса, мы добудем все необходимые нам данные. Выберем дату, например, да нам всё равно, но пусть это будет 27 июля 2018 года UT 20:21. Как раз в этот момент наблюдалась полная фаза лунного затмения. Программа выдаст нам огромную портянку

Полный вывод для эфемерид Луны на 27.07.2018 20:21 (начало координат в центре Земли)

******************************************************************************* Revised: Jul 31, 2013 Moon / (Earth) 301 GEOPHYSICAL DATA (updated 2018-Aug-13): Vol. Mean Radius, km = 1737.53+-0.03 Mass, x10^22 kg = 7.349 Radius (gravity), km = 1738.0 Surface emissivity = 0.92 Radius (IAU), km = 1737.4 GM, km^3/s^2 = 4902.800066 Density, g/cm^3 = 3.3437 GM 1-sigma, km^3/s^2 = +-0.0001 V(1,0) = +0.21 Surface accel., m/s^2 = 1.62 Earth/Moon mass ratio = 81.3005690769 Farside crust. thick. = ~80 - 90 km Mean crustal density = 2.97+-.07 g/cm^3 Nearside crust. thick.= 58+-8 km Heat flow, Apollo 15 = 3.1+-.6 mW/m^2 k2 = 0.024059 Heat flow, Apollo 17 = 2.2+-.5 mW/m^2 Rot. Rate, rad/s = 0.0000026617 Geometric Albedo = 0.12 Mean angular diameter = 31"05.2" Orbit period = 27.321582 d Obliquity to orbit = 6.67 deg Eccentricity = 0.05490 Semi-major axis, a = 384400 km Inclination = 5.145 deg Mean motion, rad/s = 2.6616995x10^-6 Nodal period = 6798.38 d Apsidal period = 3231.50 d Mom. of inertia C/MR^2= 0.393142 beta (C-A/B), x10^-4 = 6.310213 gamma (B-A/C), x10^-4 = 2.277317 Perihelion Aphelion Mean Solar Constant (W/m^2) 1414+-7 1323+-7 1368+-7 Maximum Planetary IR (W/m^2) 1314 1226 1268 Minimum Planetary IR (W/m^2) 5.2 5.2 5.2 ******************************************************************************* ******************************************************************************* Ephemeris / WWW_USER Wed Aug 15 20:45:05 2018 Pasadena, USA / Horizons ******************************************************************************* Target body name: Moon (301) {source: DE431mx} Center body name: Earth (399) {source: DE431mx} Center-site name: BODY CENTER ******************************************************************************* Start time: A.D. 2018-Jul-27 20:21:00.0003 TDB Stop time: A.D. 2018-Jul-28 20:21:00.0003 TDB Step-size: 0 steps ******************************************************************************* Center geodetic: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Lat(deg),Alt(km)} Center cylindric: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Dxy(km),Dz(km)} Center radii: 6378.1 x 6378.1 x 6356.8 km {Equator, meridian, pole} Output units: AU-D Output type: GEOMETRIC cartesian states Output format: 3 (position, velocity, LT, range, range-rate) Reference frame: ICRF/J2000.0 Coordinate systm: Ecliptic and Mean Equinox of Reference Epoch ******************************************************************************* JDTDB X Y Z VX VY VZ LT RG RR ******************************************************************************* $$SOE 2458327.347916670 = A.D. 2018-Jul-27 20:21:00.0003 TDB X = 1.537109094089627E-03 Y =-2.237488447258137E-03 Z = 5.112037386426180E-06 VX= 4.593816208618667E-04 VY= 3.187527302531735E-04 VZ=-5.183707711777675E-05 LT= 1.567825598846416E-05 RG= 2.714605874095336E-03 RR=-2.707898607099066E-06 $$EOE ******************************************************************************* Coordinate system description: Ecliptic and Mean Equinox of Reference Epoch Reference epoch: J2000.0 XY-plane: plane of the Earth"s orbit at the reference epoch Note: obliquity of 84381.448 arcseconds wrt ICRF equator (IAU76) X-axis: out along ascending node of instantaneous plane of the Earth"s orbit and the Earth"s mean equator at the reference epoch Z-axis: perpendicular to the xy-plane in the directional (+ or -) sense of Earth"s north pole at the reference epoch. Symbol meaning : JDTDB Julian Day Number, Barycentric Dynamical Time X X-component of position vector (au) Y Y-component of position vector (au) Z Z-component of position vector (au) VX X-component of velocity vector (au/day) VY Y-component of velocity vector (au/day) VZ Z-component of velocity vector (au/day) LT One-way down-leg Newtonian light-time (day) RG Range; distance from coordinate center (au) RR Range-rate; radial velocity wrt coord. center (au/day) Geometric states/elements have no aberrations applied. Computations by ... Solar System Dynamics Group, Horizons On-Line Ephemeris System 4800 Oak Grove Drive, Jet Propulsion Laboratory Pasadena, CA 91109 USA Information: http://ssd.jpl.nasa.gov/ Connect: telnet://ssd.jpl.nasa.gov:6775 (via browser) http://ssd.jpl.nasa.gov/?horizons telnet ssd.jpl.nasa.gov 6775 (via command-line) Author: [email protected] *******************************************************************************


Бр-р-р, что это? Без паники, для того, кто хорошо учил в школе астрономию, механику и математику тут боятся нечего. Итак, самое главное конечное искомые координаты и компоненты скорости Луны.

$$SOE 2458327.347916670 = A.D. 2018-Jul-27 20:21:00.0003 TDB X = 1.537109094089627E-03 Y =-2.237488447258137E-03 Z = 5.112037386426180E-06 VX= 4.593816208618667E-04 VY= 3.187527302531735E-04 VZ=-5.183707711777675E-05 LT= 1.567825598846416E-05 RG= 2.714605874095336E-03 RR=-2.707898607099066E-06 $$EOE
Да-да-да, они декартовы! Если внимательно прочесть всю портянку, то мы узнаем, что начало этой системы координат совпадает с центром Земли. Плоскость XY лежит в плоскости земной орбиты (плоскости эклиптики) на эпоху J2000. Ось X направлена вдоль линии пересечения плоскости экватора Земли и эклиптики в точку весеннего равноденствия. Ось Z смотрит в направлении северного полюса Земли перпендикулярно плоскости эклиптики. Ну а ось Y дополняет всё это счастье до правой тройки векторов. По-умолчанию единицы измерения координат: астрономические единицы (умнички из NASA приводят и величину автрономической единицы в километрах). Единицы измерения скорости: астрономические единицы в день, день принимается равным 86400 секундам. Полный фарш!

Аналогичную информацию мы можем получить и для Земли

Полный вывод эфемерид Земли на 27.07.2018 20:21 (начало координат в центре масс Солнечной системы)

******************************************************************************* Revised: Jul 31, 2013 Earth 399 GEOPHYSICAL PROPERTIES (revised Aug 13, 2018): Vol. Mean Radius (km) = 6371.01+-0.02 Mass x10^24 (kg)= 5.97219+-0.0006 Equ. radius, km = 6378.137 Mass layers: Polar axis, km = 6356.752 Atmos = 5.1 x 10^18 kg Flattening = 1/298.257223563 oceans = 1.4 x 10^21 kg Density, g/cm^3 = 5.51 crust = 2.6 x 10^22 kg J2 (IERS 2010) = 0.00108262545 mantle = 4.043 x 10^24 kg g_p, m/s^2 (polar) = 9.8321863685 outer core = 1.835 x 10^24 kg g_e, m/s^2 (equatorial) = 9.7803267715 inner core = 9.675 x 10^22 kg g_o, m/s^2 = 9.82022 Fluid core rad = 3480 km GM, km^3/s^2 = 398600.435436 Inner core rad = 1215 km GM 1-sigma, km^3/s^2 = 0.0014 Escape velocity = 11.186 km/s Rot. Rate (rad/s) = 0.00007292115 Surface Area: Mean sidereal day, hr = 23.9344695944 land = 1.48 x 10^8 km Mean solar day 2000.0, s = 86400.002 sea = 3.62 x 10^8 km Mean solar day 1820.0, s = 86400.0 Moment of inertia = 0.3308 Love no., k2 = 0.299 Mean Temperature, K = 270 Atm. pressure = 1.0 bar Vis. mag. V(1,0) = -3.86 Volume, km^3 = 1.08321 x 10^12 Geometric Albedo = 0.367 Magnetic moment = 0.61 gauss Rp^3 Solar Constant (W/m^2) = 1367.6 (mean), 1414 (perihelion), 1322 (aphelion) ORBIT CHARACTERISTICS: Obliquity to orbit, deg = 23.4392911 Sidereal orb period = 1.0000174 y Orbital speed, km/s = 29.79 Sidereal orb period = 365.25636 d Mean daily motion, deg/d = 0.9856474 Hill"s sphere radius = 234.9 ******************************************************************************* ******************************************************************************* Ephemeris / WWW_USER Wed Aug 15 21:16:21 2018 Pasadena, USA / Horizons ******************************************************************************* Target body name: Earth (399) {source: DE431mx} Center body name: Solar System Barycenter (0) {source: DE431mx} Center-site name: BODY CENTER ******************************************************************************* Start time: A.D. 2018-Jul-27 20:21:00.0003 TDB Stop time: A.D. 2018-Jul-28 20:21:00.0003 TDB Step-size: 0 steps ******************************************************************************* Center geodetic: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Lat(deg),Alt(km)} Center cylindric: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Dxy(km),Dz(km)} Center radii: (undefined) Output units: AU-D Output type: GEOMETRIC cartesian states Output format: 3 (position, velocity, LT, range, range-rate) Reference frame: ICRF/J2000.0 Coordinate systm: Ecliptic and Mean Equinox of Reference Epoch ******************************************************************************* JDTDB X Y Z VX VY VZ LT RG RR ******************************************************************************* $$SOE 2458327.347916670 = A.D. 2018-Jul-27 20:21:00.0003 TDB X = 5.755663665315949E-01 Y =-8.298818915224488E-01 Z =-5.366994499016168E-05 VX= 1.388633512282171E-02 VY= 9.678934168415631E-03 VZ= 3.429889230737491E-07 LT= 5.832932117417083E-03 RG= 1.009940888883960E+00 RR=-3.947237246302148E-05 $$EOE ******************************************************************************* Coordinate system description: Ecliptic and Mean Equinox of Reference Epoch Reference epoch: J2000.0 XY-plane: plane of the Earth"s orbit at the reference epoch Note: obliquity of 84381.448 arcseconds wrt ICRF equator (IAU76) X-axis: out along ascending node of instantaneous plane of the Earth"s orbit and the Earth"s mean equator at the reference epoch Z-axis: perpendicular to the xy-plane in the directional (+ or -) sense of Earth"s north pole at the reference epoch. Symbol meaning : JDTDB Julian Day Number, Barycentric Dynamical Time X X-component of position vector (au) Y Y-component of position vector (au) Z Z-component of position vector (au) VX X-component of velocity vector (au/day) VY Y-component of velocity vector (au/day) VZ Z-component of velocity vector (au/day) LT One-way down-leg Newtonian light-time (day) RG Range; distance from coordinate center (au) RR Range-rate; radial velocity wrt coord. center (au/day) Geometric states/elements have no aberrations applied. Computations by ... Solar System Dynamics Group, Horizons On-Line Ephemeris System 4800 Oak Grove Drive, Jet Propulsion Laboratory Pasadena, CA 91109 USA Information: http://ssd.jpl.nasa.gov/ Connect: telnet://ssd.jpl.nasa.gov:6775 (via browser) http://ssd.jpl.nasa.gov/?horizons telnet ssd.jpl.nasa.gov 6775 (via command-line) Author: [email protected] *******************************************************************************


Здесь в качестве начала координат выбран барицентр (центр масс) Солнечной системы. Интересующие нас данные

$$SOE 2458327.347916670 = A.D. 2018-Jul-27 20:21:00.0003 TDB X = 5.755663665315949E-01 Y =-8.298818915224488E-01 Z =-5.366994499016168E-05 VX= 1.388633512282171E-02 VY= 9.678934168415631E-03 VZ= 3.429889230737491E-07 LT= 5.832932117417083E-03 RG= 1.009940888883960E+00 RR=-3.947237246302148E-05 $$EOE
Для Луны нам понадобятся координаты и скорость относительно барицентра Солнечной системы, мы можем их посчитать, а можем попросит NASA дать нам такие данные

Полный вывод эфемерид Луны на 27.07.2018 20:21 (начало координат в центре масс Солнечной системы)

******************************************************************************* Revised: Jul 31, 2013 Moon / (Earth) 301 GEOPHYSICAL DATA (updated 2018-Aug-13): Vol. Mean Radius, km = 1737.53+-0.03 Mass, x10^22 kg = 7.349 Radius (gravity), km = 1738.0 Surface emissivity = 0.92 Radius (IAU), km = 1737.4 GM, km^3/s^2 = 4902.800066 Density, g/cm^3 = 3.3437 GM 1-sigma, km^3/s^2 = +-0.0001 V(1,0) = +0.21 Surface accel., m/s^2 = 1.62 Earth/Moon mass ratio = 81.3005690769 Farside crust. thick. = ~80 - 90 km Mean crustal density = 2.97+-.07 g/cm^3 Nearside crust. thick.= 58+-8 km Heat flow, Apollo 15 = 3.1+-.6 mW/m^2 k2 = 0.024059 Heat flow, Apollo 17 = 2.2+-.5 mW/m^2 Rot. Rate, rad/s = 0.0000026617 Geometric Albedo = 0.12 Mean angular diameter = 31"05.2" Orbit period = 27.321582 d Obliquity to orbit = 6.67 deg Eccentricity = 0.05490 Semi-major axis, a = 384400 km Inclination = 5.145 deg Mean motion, rad/s = 2.6616995x10^-6 Nodal period = 6798.38 d Apsidal period = 3231.50 d Mom. of inertia C/MR^2= 0.393142 beta (C-A/B), x10^-4 = 6.310213 gamma (B-A/C), x10^-4 = 2.277317 Perihelion Aphelion Mean Solar Constant (W/m^2) 1414+-7 1323+-7 1368+-7 Maximum Planetary IR (W/m^2) 1314 1226 1268 Minimum Planetary IR (W/m^2) 5.2 5.2 5.2 ******************************************************************************* ******************************************************************************* Ephemeris / WWW_USER Wed Aug 15 21:19:24 2018 Pasadena, USA / Horizons ******************************************************************************* Target body name: Moon (301) {source: DE431mx} Center body name: Solar System Barycenter (0) {source: DE431mx} Center-site name: BODY CENTER ******************************************************************************* Start time: A.D. 2018-Jul-27 20:21:00.0003 TDB Stop time: A.D. 2018-Jul-28 20:21:00.0003 TDB Step-size: 0 steps ******************************************************************************* Center geodetic: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Lat(deg),Alt(km)} Center cylindric: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Dxy(km),Dz(km)} Center radii: (undefined) Output units: AU-D Output type: GEOMETRIC cartesian states Output format: 3 (position, velocity, LT, range, range-rate) Reference frame: ICRF/J2000.0 Coordinate systm: Ecliptic and Mean Equinox of Reference Epoch ******************************************************************************* JDTDB X Y Z VX VY VZ LT RG RR ******************************************************************************* $$SOE 2458327.347916670 = A.D. 2018-Jul-27 20:21:00.0003 TDB X = 5.771034756256845E-01 Y =-8.321193799697072E-01 Z =-4.855790760378579E-05 VX= 1.434571674368357E-02 VY= 9.997686898668805E-03 VZ=-5.149408819470315E-05 LT= 5.848610189172283E-03 RG= 1.012655462859054E+00 RR=-3.979984423450087E-05 $$EOE ******************************************************************************* Coordinate system description: Ecliptic and Mean Equinox of Reference Epoch Reference epoch: J2000.0 XY-plane: plane of the Earth"s orbit at the reference epoch Note: obliquity of 84381.448 arcseconds wrt ICRF equator (IAU76) X-axis: out along ascending node of instantaneous plane of the Earth"s orbit and the Earth"s mean equator at the reference epoch Z-axis: perpendicular to the xy-plane in the directional (+ or -) sense of Earth"s north pole at the reference epoch. Symbol meaning : JDTDB Julian Day Number, Barycentric Dynamical Time X X-component of position vector (au) Y Y-component of position vector (au) Z Z-component of position vector (au) VX X-component of velocity vector (au/day) VY Y-component of velocity vector (au/day) VZ Z-component of velocity vector (au/day) LT One-way down-leg Newtonian light-time (day) RG Range; distance from coordinate center (au) RR Range-rate; radial velocity wrt coord. center (au/day) Geometric states/elements have no aberrations applied. Computations by ... Solar System Dynamics Group, Horizons On-Line Ephemeris System 4800 Oak Grove Drive, Jet Propulsion Laboratory Pasadena, CA 91109 USA Information: http://ssd.jpl.nasa.gov/ Connect: telnet://ssd.jpl.nasa.gov:6775 (via browser) http://ssd.jpl.nasa.gov/?horizons telnet ssd.jpl.nasa.gov 6775 (via command-line) Author: [email protected] *******************************************************************************


$$SOE 2458327.347916670 = A.D. 2018-Jul-27 20:21:00.0003 TDB X = 5.771034756256845E-01 Y =-8.321193799697072E-01 Z =-4.855790760378579E-05 VX= 1.434571674368357E-02 VY= 9.997686898668805E-03 VZ=-5.149408819470315E-05 LT= 5.848610189172283E-03 RG= 1.012655462859054E+00 RR=-3.979984423450087E-05 $$EOE
Чудесно! Теперь необходимо слегка обработать полученные данные напильником.

6. 38 попугаев и одно попугайское крылышко

Для начала определимся с масштабом, ведь наши уравнения движения (5) записаны в безразмерной форме. Данные, предоставленные NASA сами подсказывают нам, что за масштаб координат стоит взять одну астрономическую единицу. Соответственно в качестве эталонного тела, к которому мы будем нормировать массы других тел мы возьмем Солнце, а в качестве масштаба времени - период обращения Земли вокруг Солнца.

Все это конечно очень хорошо, но мы не задали начальные условия для Солнца. «Зачем?» - спросил бы меня какой-нибудь лингвист. А я бы ответил, что Солнце отнюдь не неподвижно, а тоже вращается по своей орбите вокруг центра масс Солнечной системы. В этом можно убедится, взглянув на данные NASA для Солнца

$$SOE 2458327.347916670 = A.D. 2018-Jul-27 20:21:00.0003 TDB X = 6.520050993518213E+04 Y = 1.049687363172734E+06 Z =-1.304404963058507E+04 VX=-1.265326939350981E-02 VY= 5.853475278436883E-03 VZ= 3.136673455633667E-04 LT= 3.508397935601254E+00 RG= 1.051791240756026E+06 RR= 5.053500842402456E-03 $$EOE
Взглянув на параметр RG мы увидим, что Солнце вращается вокруг барицентра Солнечной системы, и на 27.07.2018 центр звезды находится от него на расстоянии в миллион километров. Радиус Солнца, для справки - 696 тысяч километров. То есть барицентр Солнечной системы лежит в полумиллионе километров от поверхности светила. Почему? Да потому что все остальные тела, взаимодействующие с Солнцем так же сообщают ему ускорение, главным образом, конечно тяжеленький Юпитер. Соответственно у Солнца тоже есть своя орбита.

Мы конечно можем выбрать эти данные в качестве начальных условий, но нет - мы же решаем модельную задачу трех тел, и Юпитер и прочие персонажи в неё не входят. Так что в ущерб реализму, зная положение и скорости Земли и Луны мы пересчитаем начальные условия для Солнца, так, чтобы центр масс системы Солнце - Земля - Луна находился в начале координат. Для центра масс нашей механической системы справедливо уравнение

Поместим центр масс в начало координат, то есть зададимся , тогда

откуда

Перейдем к безразмерным координатам и параметрам, выбрав

Дифференцируя (6) по времени и переходя к безразмерному времени получаем и соотношение для скоростей

где

Теперь напишем программу, которая сформирует начальные условия в выбранных нами «попугаях». На чем будем писать? Конечно же на Питоне! Ведь, как известно, это самый лучший язык для математического моделирования.

Однако, если уйти от сарказма, то мы действительно попробуем для этой цели питон, а почему нет? Я обязательно приведу ссылку на весь код в моем профиле Github .

Расчет начальных условий для системы Луна - Земля - Солнце

# # Исходные данные задачи # # Гравитационная постоянная G = 6.67e-11 # Массы тел (Луна, Земля, Солнце) m = # Расчитываем гравитационные параметры тел mu = print("Гравитационные параметры тел") for i, mass in enumerate(m): mu.append(G * mass) print("mu[" + str(i) + "] = " + str(mu[i])) # Нормируем гравитационные параметры к Солнцу kappa = print("Нормированные гравитационные параметры") for i, gp in enumerate(mu): kappa.append(gp / mu) print("xi[" + str(i) + "] = " + str(kappa[i])) print("\n") # Астрономическая единица a = 1.495978707e11 import math # Масштаб безразмерного времени, c T = 2 * math.pi * a * math.sqrt(a / mu) print("Масштаб времени T = " + str(T) + "\n") # Координаты NASA для Луны xL = 5.771034756256845E-01 yL = -8.321193799697072E-01 zL = -4.855790760378579E-05 import numpy as np xi_10 = np.array() print("Начальное положение Луны, а.е.: " + str(xi_10)) # Координаты NASA для Земли xE = 5.755663665315949E-01 yE = -8.298818915224488E-01 zE = -5.366994499016168E-05 xi_20 = np.array() print("Начальное положение Земли, а.е.: " + str(xi_20)) # Расчитываем начальное положение Солнца, полагая что начало координат - в центре масс всей системы xi_30 = - kappa * xi_10 - kappa * xi_20 print("Начальное положение Солнца, а.е.: " + str(xi_30)) # Вводим константы для вычисления безразмерных скоростей Td = 86400.0 u = math.sqrt(mu / a) / 2 / math.pi print("\n") # Начальная скорость Луны vxL = 1.434571674368357E-02 vyL = 9.997686898668805E-03 vzL = -5.149408819470315E-05 vL0 = np.array() uL0 = np.array() for i, v in enumerate(vL0): vL0[i] = v * a / Td uL0[i] = vL0[i] / u print("Начальная скорость Луны, м/с: " + str(vL0)) print(" -//- безразмерная: " + str(uL0)) # Начальная скорость Земли vxE = 1.388633512282171E-02 vyE = 9.678934168415631E-03 vzE = 3.429889230737491E-07 vE0 = np.array() uE0 = np.array() for i, v in enumerate(vE0): vE0[i] = v * a / Td uE0[i] = vE0[i] / u print("Начальная скорость Земли, м/с: " + str(vE0)) print(" -//- безразмерная: " + str(uE0)) # Начальная скорость Солнца vS0 = - kappa * vL0 - kappa * vE0 uS0 = - kappa * uL0 - kappa * uE0 print("Начальная скорость Солнца, м/с: " + str(vS0)) print(" -//- безразмерная: " + str(uS0))


Выхлоп программы

Гравитационные параметры тел mu = 4901783000000.0 mu = 386326400000000.0 mu = 1.326663e+20 Нормированные гравитационные параметры xi = 3.6948215183509304e-08 xi = 2.912016088486677e-06 xi = 1.0 Масштаб времени T = 31563683.35432583 Начальное положение Луны, а.е.: [ 5.77103476e-01 -8.32119380e-01 -4.85579076e-05] Начальное положение Земли, а.е.: [ 5.75566367e-01 -8.29881892e-01 -5.36699450e-05] Начальное положение Солнца, а.е.: [-1.69738146e-06 2.44737475e-06 1.58081871e-10] Начальная скорость Луны, м/с: -//- безразмерная: [ 5.24078311 3.65235907 -0.01881184] Начальная скорость Земли, м/с: -//- безразмерная: Начальная скорость Солнца, м/с: [-7.09330769e-02 -4.94410725e-02 1.56493465e-06] -//- безразмерная: [-1.49661835e-05 -1.04315813e-05 3.30185861e-10]

7. Интегрирование уравнений движения и анализ результатов

Собственно само интегрирование сводится к более-менее стандартной для SciPy процедуре подготовки системы уравнений: преобразованию системы ОДУ к форме Коши и вызову соответствующих функций-решателей. Для преобразования системы к форме Коши вспоминаем, что

Тогда введя вектор состояния системы

сводим (7) и (5) к одному векторному уравнению

Для интегрирования (8) с имеющимися начальными условиями напишем немного, совсем немного кода

Интегрирования уравнений движения в задаче трех тел

# # Вычисление векторов обобщенных ускорений # def calcAccels(xi): k = 4 * math.pi ** 2 xi12 = xi - xi xi13 = xi - xi xi23 = xi - xi s12 = math.sqrt(np.dot(xi12, xi12)) s13 = math.sqrt(np.dot(xi13, xi13)) s23 = math.sqrt(np.dot(xi23, xi23)) a1 = (k * kappa / s12 ** 3) * xi12 + (k * kappa / s13 ** 3) * xi13 a2 = -(k * kappa / s12 ** 3) * xi12 + (k * kappa / s23 ** 3) * xi23 a3 = -(k * kappa / s13 ** 3) * xi13 - (k * kappa / s23 ** 3) * xi23 return # # Система уравнений в нормальной форме Коши # def f(t, y): n = 9 dydt = np.zeros((2 * n)) for i in range(0, n): dydt[i] = y xi1 = np.array(y) xi2 = np.array(y) xi3 = np.array(y) accels = calcAccels() i = n for accel in accels: for a in accel: dydt[i] = a i = i + 1 return dydt # Начальные условия задачи Коши y0 = # # Интегрируем уравнения движения # # Начальное время t_begin = 0 # Конечное время t_end = 30.7 * Td / T; # Интересующее нас число точек траектории N_plots = 1000 # Шаг времени между точкими step = (t_end - t_begin) / N_plots import scipy.integrate as spi solver = spi.ode(f) solver.set_integrator("vode", nsteps=50000, method="bdf", max_step=1e-6, rtol=1e-12) solver.set_initial_value(y0, t_begin) ts = ys = i = 0 while solver.successful() and solver.t <= t_end: solver.integrate(solver.t + step) ts.append(solver.t) ys.append(solver.y) print(ts[i], ys[i]) i = i + 1


Посмотрим что у нас получилось. Получилась пространственная траектория Луны на первые 29 суток от выбранной нами начальной точки


а так же её проекция в плоскость эклиптики.


«Эй, дядя, что ты нам впариваешь?! Это же окружность!».

Во-первых, таки не окружность - заметно смещение проекции траектории от начала координат вправо и вниз. Во-вторых - ничего не замечаете? Не, ну правда?


Обещаю подготовить обоснование того (на основе анализа погрешностей счета и данных NASA), что полученное смещение траектории не есть следствие ошибок интегрирования. Пока предлагаю читателю поверить мне на слово - это смещение есть следствие солнечного возмущения лунной траектории. Крутанем-ка еще один оборот



Во как! Причем обратите внимание на то, что исходя из начальных данных задачи Солнце находится как раз в той стороне, куда смещается траектория Луны на каждом обороте. Да это наглое Солнце ворует у нас наш любимый спутник! Ох уж это Солнце!

Можно сделать вывод, что солнечная гравитация влияет на орбиту Луны достаточно существенно - старушка не ходит по небу дважды одним и тем же путём. Картинка за полгода движения позволяет (по крайней мере качественно) убедится в этом (картинка кликабельна)

Интересно? Ещё бы. Астрономия вообще наука занятная.

Постскриптум

В вузе, где я учился и работал без малого семь лет - Новочеркасском политехе - ежегодно проводилась зональная олимпиада студентов по теоретической механике вузов Северного Кавказа. Трижды мы принимали и Всероссийскую олимпиаду. На открытии, наш главный «олимпиец», профессор Кондратенко А.И., всегда говорил: «Академик Крылов называл механику поэзией точных наук».

Я люблю механику. Всё то хорошее, чего я добился в своей жизни и карьере произошло благодаря этой науке и моим замечательным учителям. Я уважаю механику.

Поэтому, я никогда не позволю издеваться над этой наукой и нагло эксплуатировать её в своих целях никому, будь он хоть трижды доктор наук и четырежды лингвист, и разработал хоть миллион учебных программ. Я искренне считаю, что написание статей на популярном публичном ресурсе должно предусматривать их тщательную вычитку, нормальное оформление (формулы LaTeX - это не блажь разработчиков ресурса!) и отсутствие ошибок, приводящих к результатам нарушающим законы природы. Последнее вообще «маст хэв».

Я часто говорю своим студентам: «компьютер освобождает ваши руки, но это не значит, что при этом нужно отключать и мозг».

Ценить и уважать механику я призываю и вас, мои уважаемые читатели. Охотно отвечу на любые вопросы, а исходный текст примера решения задачи трех тел на языке Python, как и обещал, Добавить метки