Статистические методы анализа и управления качеством. Функция потерь качества по Тагути (QLF) и скрытые затраты, связанные с качеством

В 1960 г. японский ученый Тагути высказал мысль, что качество не может рассматриваться просто как мера соответствия требованиям про- ектной/конструкторской документации и недостаточно соблюдения качества в терминах границ допусков. Необходимо постоянно стремиться к уменьшению разброса даже внутри границ, установленных проектом.

Например, процессы в японских технологиях часто бывают отработаны до такой степени, что измеряемые характеристики качества занимают только половину, треть или даже одну пятую от интервала допуска.

Рассмотрим выгоды такого подхода. Во-первых, это улучшение репутации в глазах потребителя, что естественным образом создает тенденцию расширения спроса. Работа, проводимая таким образом, приводит к получению знаний, что позволяет улучшить другие процессы и операции.

Во-вторых, упрощение введения модификаций, улучшений, так как больше времени высвобождается для исследований и разработок и уменьшается количество времени, необходимого для запуска их результатов в дело, поскольку для этого гораздо более развиты технические возможности. В результате процессы протекают гладко. Даже если процесс выходит из статистически управляемого состояния и проблему нельзя решить быстро и просто, производство может осуществляться нормально, так как выход процесса, с большим запасом находящегося в границах допуска, не даст «выброса», близкого к границам допуска.

В-третъых, минимальными оказываются затраты на обслуживание продукта, полученного потребителем, т.е. минимизируются переделки, наладки и расходы по гарантийному обслуживанию.

Заметим, что допуски были не нужны во времена, предшествовавшие массовому производству, когда детали индивидуально обрабатывались так, чтобы они соответствовали друг другу. Но массовое производство исключило эту возможность. Почти единственным решением в данной ситуации было установление допуска от номинала, крайние значения которого задают границы нормы. Единицы продукции, параметры которых находятся внутри интервала, т.е. между границами допуска (в поле допуска), принимаются как приемлемые, а те, что не попадают в поле допуска, отбраковываются.

Рассмотрим некоторые проблемы, которые вызываются введением допусков, на достаточно простом примере производства валов и цилиндрических отверстий, к которым должны хорошо подходить эти валы - не слишком туго и не слишком свободно. Если их сочленение выполнено с более плотной посадкой, в процессе работы машины возникнет избыточное трение. Для его преодоления потребуется большая мощность или расход топлива. При этом возможно возникновение локального перегрева, который может привести к деформациям и плохой работе. Если посадка слишком свободная, то возможна утечка смазки, что может вызвать повреждения в других местах. Замена смазки может оказаться дорогостоящей процедурой как из-за стоимости самого смазывающего состава, так и из-за необходимости остановки машины для проведения техобслуживания. Слабая посадка может также привести к вибрациям, вызывающим шум, пульсирующие нагрузки, которые, весьма вероятно, приведут к уменьшению срока службы из-за отказов, вызванных напряжениями. В общем случае такие потери будут со временем увеличиваться, причем они будут возникать даже в том случае, если обе детали находятся внутри любым образом определенных границ допусков.

Очевидно, необходим качественно другой подход, который не требует искусственного определения годного и негодного, хорошего и плохого, дефектного и бездефектного, соответствующего и несоответствующего. Такой подход предполагает, что существует наилучшее (номинальное) значение и что любое отклонение от него вызывает потери или сложности, как в рассмотренных выше примерах.

Графически функция потерь Тагуги обычно представляется в форме, подобной показанной на рис. 5.6. Значение показателя качества откладывается на горизонтальной оси, а вертикальная ось показывает потери, или вред, или значимость, относящиеся к значениям показателей качества. Эти потери принимаются равными нулю, когда характеристика качества достигает номинального значения.

Рис.

Математически функция Тагути записывается в следующем виде:

где х - измеряемое значение показателя качества; х 0 - его номинальное значение; L(x ) - значение функции потерь Тагути в точке х; с - коэффициент масштаба (подбираемый в соответствии с используемой денежной единицей при измерении потерь).

Это наиболее естественная и простая математическая функция, пригодная для представления основных особенностей функции потерь Тагути. Так, эта формула предполагает одинаковый уровень потерь при отклонениях от номинала в обе стороны. Вместе с тем данная модель, очевидно, не подходит для больших отклонений от номинального значения. Однако если технологические процессы не столь плохи, чтобы требовалось рассматривать такие большие отклонения, параболический вид функции вполне подходит.

Преимущества функции потерь Тагути по сравнению с использованием системы допусков состоят в следующем. Во-первых, функция потерь Тагуги постоянно поддерживает в нашем сознании необходимость постоянных улучшений. Во-вторых, даже очень грубая оценка функции потерь дает полезную информацию для ранжирования приоритетов в программе улучшений. Последовательность приоритетов должна быть обоснована: наиболее актуальные задачи должны решаться в первую очередь, а другие, хотя и необходимые, могут немного подождать. Есть большой смысл в том, чтобы рассчитывать функцию потерь Тагути для выделенных процессов, с тем чтобы сконцентрироваться на тех из них, которые имеют наиболее крутую функцию потерь в диапазоне их обычных рабочих условий. В-третьих, использование функции потерь дает основу для количественных оценок значимости мероприятий по улучшению качества.

Контрольные вопросы

  • 1. Дайте классификацию затрат на обеспечение качества.
  • 2. Каков диапазон «цены» качества?
  • 3. Как изменяется структура затрат на качество в результате внедрения системы TQM?
  • 4. В чем состоят основные преимущества внедрения систем менеджмента качества?
  • 5. Какова роль руководства предприятия во внедрении систем менеджмента качества?
  • 6. Проанализируйте, какие элементы затрат на качество увеличиваются в результате внедрения TQM.
  • 7. Опишите применимость функции потерь Тагути.
  • 8. Каковы преимущества функции потерь Тагути по сравнению с использованием системы допусков?

График функции потерь Тагути, показанный на рисунке 34, - это парабола, вытянутая вдоль вертикальной оси и имеющая минимальное значение, равное нулю, в точке номинального значения показателя качества.

Уравнение такой параболы имеет вид:

L(х) = с(х - х0)2,

где: х - измеряемое значение показателя качества; x0 - его номинальное значение; L(х) - значение функции потерь Тагути в точке х; с - коэффициент масштаба (подбираемый в соответствии с используемой денежной единицей при измерении потерь). Это наиболее естественная и простая математическая функция, пригодная для представления основных особенностей функции потерь Тагути, рассмотренных в главе 11*. Конечно, это не означает, что такой ее вид - наилучший выбор в каждом конкретном случае ее применения. Отметим, например, тот факт, что вышеприведенная формула предполагает одинаковый уровень потерь при отклонениях от номинала в обе стороны (в конце предшествующей главы мы рассматривали конкретный случай, когда это предположение не выполняется). С другой стороны, хотя данная модель часто служит разумным приближением для показателя качества в пределах его допусков и на не слишком большом удалении от границ допуска, она, очевидно, не подходит для больших отклонений от номинального значения. Однако наши процессы не столь уж плохи, чтобы нам требовалось рассматривать такие значительные отклонения.

* Некоторые статистики смогут обнаружить очевидную аналогию такого выбора для функции потерь Тагути с методом наименьших квадратов. - Прим. авт.

Рис. 36. Представления подхода к управлению качества на основе границ допусков с помощью функции потерь Тагути

Но даже если наша параболическая модель и не вполне корректна, она, без сомнения, значительно ближе к действительности, чем функция потерь, соответствующая подходу к качеству на основе установления границ допусков, представленная на рисунке 36. Последняя модель предполагает, что потери отсутствуют при всех отклонениях от номинала в пределах допусков, но они скачкообразно возникают на границах поля допуска. С учетом проведенного в предшествующей главе обсуждения здесь не нет нужды в детальном рассмотрении данного вопроса, за исключением одного аспекта. Припомните сделанное нами в главе 11 наблюдение об осознании важности допусков. В любой системе, механической или бюрократической, которая спохватывается, только когда что-либо выходит за границы допусков, скоропалительные действия оказываются весьма дорогостоящими. Значит, в подобных случаях действительно имеется резкое увеличение потерь после выхода показателя качества за границы допусков, но эти потери обусловлены самой системой управления, а не возникают в результате отклонений уровня качества самой продукции или услуги.

Ниже мы воспользуемся параболической моделью для более детального изучения понятий и примеров, рассмотренных в главе 11. Поскольку это всего лишь модель, конкретные числа, получаемые в ходе расчетов, не так уж важны. Поэтому незначительные отличия в числах не будут рассматриваться как что-то значимое. Стратегия, дающая несколько большие потери, чем другая стратегия в предположении применимости этой модели, при замене этой модели на другую может оказаться более предпочтительной для функции потерь. Но когда мы обнаруживаем различия на целые порядки (например, когда потери от одной стратегии в 10, 50 или даже 100 раз превышают потери от другой), мы можем с полной уверенностью сказать, что различия в стратегиях весьма значительны, даже с учетом того, что параболическая модель - всего лишь идеализация.

В качестве дальнейшей идеализации, которая нужна для проведения численных сравнений в данной главе, мы вынуждены предположить, что рассматриваемые здесь процессы будут абсолютно стабильными. Приведенный в главе 4 термин «абсолютно стабильный» предполагает, что ста

Организация как система

тистическое распределение процесса неизменно, не колеблется. В частности, это означает, что мы можем говорить в терминах истинных значений для среднего и стандартного отклонения, которые мы обозначим (но только в

данной главе) символами

Если процесс абсолютно стабилен и имеет плотность распределения вероятности, тогда средние потери Тагути можно вычислить из:

что соответствует площади под кривой, задаваемой произведением функции потерь L(х) на плотность вероятности f(x). Некоторые очевидные математические преобразования позволяют привести это выражение к виду:

где члены внутри фигурных скобок ({...}) представляют соответственно квадратичное (стандартное) отклонение (обычно связанное с дисперсией) и квадрат смещения. Следует заметить, что средние потери Тагути не зависят каким-то сложным образом от f(x); их можно весьма просто вычислить, если известны простые параметры, входящие в последнее выражение*.

Чтобы облегчить сравнения, давайте также введем обозначение для воспроизводимости процесса. В разных компаниях она определяется раз- личным образом, но мы будем полагать ее равной разности между верхней и нижней границами допуска деленной на разность между верхней и ниж- ней естественными пределами процесса, где для естественных пределов

процесса мы используем «истинные» границы

* Важное следствие этого - отсутствие каких-либо предположений относительно вида функции, например ее соответствия, близости нормальному (Гауссовому) распределению. Мы, однако, использовали нормальное распределение для иллюстрации на рисунках 37-40, а также в некоторых тонких деталях, вычислений в двух последних примерах данной главы. - Прим. авт.

** Это не определение Демингом воспроизводимости. Не удивительно, что он определяет воспроизводимость (стабильного) процесса просто как определение естественных пределов процесса, без ссылки на допуски. - Прим. авт.

соответственно. (Хотя это противоречит

важному замечанию Деминга касательно реальных процессов; см.: «Выход из кризиса», стр. 293.)

Далее мы будем использовать понятие средних потерь Тагути. Средние потери Тагути, применительно к выборке или партии из п изделий, для которых значения X1, х2,..., хn рассматриваемого показателя качества х равны:

для индивидуальных

наблюдений, так что знаменатель можно представить просто как

Глава 12. Функция потерь Тагути: более подробное рассмотрение

Воспроизводимость, равная 1 (единичная воспроизводимость), соответствует процессу, который в большинстве случаев едва укладывается в границы допусков*. Процесс иногда называют воспроизводимым или невоспроизводимым в зависимости от того, превосходит ли показатель воспроизводимости единицу или нет. Обычный образ мыслей на Западе - признание значения 1 1/3 как соответствующего исключительно эффективному процессу, а значения 12/3 - уже, возможно, слишком экстравагантным, поскольку вероятность получения в этом случае измерения за пределами допусков оказывается пренебрежимо малой**. Однако заметим, что данные о процессах из японской практики, упоминаемые в главе 11, позволяют оценить их уровень воспроизводимости от 3 до 5. И чтобы мера воспроизводимости отражала то, что процесс может давать на самом деле (а не то, на что он потенциально способен), надо предположить, что процесс точно настроен (центрирован), т.е. среднее процесса совпадает с номинальным значением х0. Ниже мы рассмотрим, что происходит, если это предположение не выполняется.

Мы должны выбрать значение масштабного коэффициента с в уравнении для параболы таким образом, чтобы процесс, имеющий воспроизводимость 1 и точно центрированный, имел бы средние потери Тагути, равные 100 единицам. Вначале рассмотрим значения средних потерь Тагути для абсолютно стабильного процесса, точно настроенного на номинальное значение Ху, но в предположении различной воспроизводимости процесса.

Таблица 1. Абсолютно стабильный процесс, точно настроенный

Мы видим, что повышение воспроизводимости от 1 1/3 до 12/3 уменьшает средние потери Тагути от половины до трети их значения по сравнению с потерями, соответствующими единичной воспроизводимости. Однако повышение воспроизводимости до 3-5 дает огромный эффект, описываемый в терминах порядков величин, как мы говорили об этом ранее. Графики средних потерь Тагути, в зависимости от воспроизводимости процессов, для всех примеров, рассматриваемых в данной главе, показаны на рисунке 41.

* Например, если процесс точно центрирован, а распределение нормальное, то в среднем одно измерение из почти 400 будет выходить за границы допуска, и при этом - на весьма незначительную величину. - Прим. авт.

** Модные ныне «шесть сигм» соответствуют воспроизводимости, равной 2. - Прим. авт. Воспроизводимость 1/2 3/4 1 1 1/3 12/з 2 3 5 Средние потери Тагути 400 178 100 56 36 25 11 4 174

Организация как система

Важность точной настройки (центрирования) процесса можно быстро оценить, сравнивая данные таблиц 1 и 2.

Данные таблицы 2 рассчитаны в предположении, что процесс неточно настроен и центрирован в середине диапазона между номиналом и одним из пределов допуска.

Таблица 2. Абсолютно стабильный процесс, центрированный посередине между номиналом и одной из границ допуска

Плохая настройка процесса полностью разрушает все потенциальные преимущества улучшения воспроизводимости. Однако даже при такой плохой настройке процесс, имеющий воспроизводимость 2 и выше, прак- тически не будет давать изделий, выходящих за границы допусков. Поэто- му, хотя такой процесс рассматривался бы как безусловно выдающийся с точки зрения удовлетворения заданных допусков, - рассмотренный с по- зиций функции потерь Тагути он, безусловно, намного хуже, чем точно настроенный процесс; например, для эффективности, равной 2, потери в таблице 2 в десять раз превышают потери, приводимые в таблице 1.

Теперь мы рассмотрим два примера, описанные в конце предшествую- щей главы. Сначала обратимся к проблеме износа инструмента. Припомним детали: первоначально процесс настроен так, чтобы результаты измерений были близки к верхней границе допуска (ВГД). Затем износ инструмента будет приводить к постепенному уменьшению значений; когда результаты начинают приближаться к нижней границе допуска (НГД), процесс останав- ливается и инструмент заменяется. Отметим, что воспроизводимость рассмат- риваемого процесса (без учета его дрейфа) должна быть больше 1, чтобы такую схему вообще можно было реализовать, иначе возможность для ма- неврирования просто отсутствовала бы. Для полноты картины ниже мы рас- смотрели также случай, соответствующий единичной воспроизводимости.

На рисунке 37 показан случай, когда воспроизводимость процесса рав- на 3. Для примера мы принимаем значения НГД и ВГД равными 10 и 16

соответственно, а стандартное отклонение Воспроизводимость 1/2 1/3 1 1 1/3 12/з 2 3 Средние потери Тагути 625 403 325 281 261 250 236 - равным 1/3 (если бы

ла равна 1, то воспроизводимость процесса также была бы равна единице). Первоначально мы настраиваем центр распределения на 15, так что рас- пределение попадает как раз ниже ВГД. Предположим, что среднее процес- са с постоянной скоростью смещается вниз, к значению 11, и в этот самый момент мы останавливаем процесс, меняем инструмент и вновь настраи- ваем его на 15. (Если бы эффективность процесса была 2 вместо 3, т.е.

0,5, тогда мы были бы должны первоначально установить центр про-

цесса на 14,5 и позволить ему затем смещаться вниз, до 11,5, когда пора

Глава 12. Функция потерь Тагути: более подробное рассмотрение

Рис. 37. Процесс с дрейфом. Воспроизводимость равна 3

Рис. 38. Процесс с дрейфом. Воспроизводимость равна 2

заменять инструмент. Этот случай представлен на рисунке 38.) Средние потери Тагути для процессов с различной воспроизводимостью, которыми «управляют» таким образом, представлены в таблице За. (При этом стоимость замены инструмента в явном виде при расчетах не учитывалась.)

Таблица За. Процесс с постоянной скоростью дрейфа.

Начинается и останавливается таким образом, чтобы только избежать выхода за границы допуска

Но что за сюрприз! Для малых значений воспроизводимости потери Тагути вначале уменьшаются, но вскоре начинают увеличиваться, так что потери для процесса с воспроизводимостью 5 оказываются более чем в два раза большими, чем для процесса с воспроизводимостью, равной 1! По Воспроизводимость 1 11/3 12/з 2 3 5 Средние потери Тагути 100 75 84 100 144 196 176

Организация как система

здравом размышлении причина такого увеличения становится ясной. Когда воспроизводимость процесса велика, его первоначальная настройка дает значения, очень близкие к ВГД, таким образом, он принужден давать изделия с параметрами, сильно отличающимися от номинальных, что соответственно приводит к высоким потерям Тагути. То же справедливо, когда процесс уже сместился к НГД в моменты, непосредственно предшествующие смене инструмента. Вследствие квадратичного характера функции потерь ущерб, вызванный этими экстремальными ситуациями, превышает выгоды от получения хороших изделий в моменты, когда процесс находился вблизи номинального значения, на полпути от ВГД к НГД.

Отметим, что полученный вывод находится в прямом противоречии с миром, основанным на использовании модели соответствия требованиям допусков. Сама схема организована таким образом, чтобы вне зависимости от того, какова воспроизводимость процесса (коль скоро она превышает 1), не производилось бы продукции, выходящей за границы допусков. Увеличение показателя воспроизводимости процесса с этой точки зрения имеет то положительное следствие, что процесс может длиться дольше до момента, когда возникает потребность в замене инструмента. Однако, как мы теперь видим, эта выгода ложна с точки зрения потерь Тагути. Средние потери Тагути существенно снизятся, если мы сможем, например, менять инструмент в два раза чаще. Так, для процесса с воспроизводимостью 3 это позволит настроить его первоначально на 14 (а не на 15) и заменить его, когда среднее значение снизится до 12 (а не до 11). Средние потери Тагути будут в этом случае равны 44 вместо 144, хотя это все еще и близко не подходит к результату, который дает процесс с воспроизводимостью 3 без смещения (в этом случае, в соответствии с таблицей 1, средние потери Тагути равны 11). В то же время это существенное улучшение по сравнению с тем, что получается, если мы ждем до возможного предела, прежде чем сменить инструмент. Таблица ЗБ показывает результат в два раза более частой смены инструмента для тех же значений воспроизводимости, что в таблице За.

Таблица ЗБ. Процесс с постоянной скоростью дрейфа.

Замена инструмента происходит в два раза чаще, чем в таблице За, при этом процесс настраивается как можно ближе к номиналу

Стоит ли существенное уменьшение средних потерь Тагути по сравнению с потерями, соответствующими в таблице За, тех дополнительных затрат, которые возникают из-за в два раза более частой замены инструмента? На этот вопрос должен дать ответ тот, кто руководит системой. Воспроизводимость 1 1 1/3 12/з 2 3 5 Средние потери Тагути 100 61 48 44 44 52 Глава 12. Функция потерь Тагути: более подробное рассмотрение

И наконец, мы подошли к рассмотрению операции обрубки. Вспомним, что среднее процесса было настроено на значение, превышающее номинал, в силу той очевидной логики, что легче укоротить длинный пруток, чем удлинить короткий. Давайте смоделируем этот случай, предположив, что среднее значение процесса обрубки установлено на ВГД, и, если длина прутка оказывается больше, чем верхний допуск, тогда от него отрубается дополнительный отрезок, равный интервалу допуска (т.е. разности между ВГД и НГД). Конечно, это тоже весьма упрощенная модель, но результат очень интересный и достаточно хорошо согласуется с той реальной ситуацией, которая послужила поводом для настоящего рассмотрения.

Рис. 39. Операция обрубки. Распределение длин в начальный момент

Проблема, связанная с данной схемой, легко обнаруживается при рассмотрении двух рисунков. Распределение, соответствующее первой обрубке, представлено на рисунке 39. После того как сделана повторная обрубка для половины прутков, оказавшихся чересчур длинными, длины оставшихся прутков имеют распределение, показанное на рисунке 40.

Отсюда становится понятно, почему средние потери Тагути оказываются такими высокими (см. табл. 4). Для большинства прутков их длины

Рис. 40. Операция обрубки. Распределение после переделки

Организация как система

оказываются близкими к границам допусков, и лишь для очень малого их числа вообще имеют место случаи, когда их длина оказывается близкой к номиналу. Другими словами, большинство прутков имеет длины, дающие максимальные значения функции потерь из всех возможных значений внутри диапазона допусков. В то же время практически отсутствуют прутки с длинами, дающими малый вклад в среднюю функцию потерь. Так же как и в предшествующем случае, для читателя должно быть очевидно, что это еще один случай, когда увеличение воспроизводимости процесса на самом деле лишь ухудшает положение дел.

Таблица 4. Операция обрубки центрирована на ВГД.

Пруток с длиной, большей чем ВГД, дополнительно обрубается на величину, равную ВГД-НГД

Как мы видим, система, которая вполне приемлема с точки зрения удовлетворения требованиям допусков, дает плачевный результат в терминах функции потерь Тагути.

Как отмечалось ранее, на рисунке 41 показаны графики зависимостей средних потерь Тагути для всех примеров, которые мы исследовали в данной главе. Бросаются в глаза огромные различия, которые, однако, скрыты от нас, если мы удовлетворяемся лишь требованиями допусков (спецификаций).

Рис. 41. Графики зависимостей для средних потерь Тагути Воспроизводимость 1/2 3/4 1 1 1/3 1 2/3 2 3 5 Средние потери Тагути 343 439 521 597 649 686 752 808

ТАГУТИ: «ИНЖИНИРИНГ КАЧЕСТВА»

Рассмотрение вклада известных мировых ученых в философию управления качеством было бы неполным без упоминания об еще одном японском специалисте - Генити Тагути (ретсМ ТауисЫ, 1924-2007). Тагути - известный японский статистик, лауреат самых престижных наград в области качества (премия Деминга присуждалась ему четыре раза), изучал вопросы совершенствования промышленных процессов и продукции с конца 1940-х гг. Он развил идеи математической статистики, относящиеся, в частности, к статистическим методам планирования эксперимента и контроля качества.

Методы Тагути (этот термин появился в США, сам же Тагути называет свою концепцию «инжиниринг качества») представляют собой один из принципиально новых подходов к решению вопросов качества. Они получили распространение не только в Японии, но и в США и странах Западной Европы. В Великобритании создан клуб Тагути, ориентированный на открытый обмен информацией и продвижение и применение предложенных им методов. Философия Тагути базируется на следующих семи основных положениях:

  • 1) важнейшей мерой качества произведенного продукта (изделия) являются суммарные потери для общества , порождаемые этим продуктом ;
  • 2) чтобы в условиях конкурентной экономики оставаться в бизнесе, необходимо постоянное повышение качества и снижение затрат;
  • 3) программа постоянного повышения качества включает непрерывное уменьшение отклонений рабочих характеристик продукта (изделия) относительно заданных величин;
  • 4) потери потребителей, связанные с отклонениями при эксплуатации продукции, обычно пропорциональны квадрату отклонений рабочих характеристик от их заданных значений 2 ;
  • 5) качество и стоимость готового продукта определяются в большой степени процессами разработки и изготовления;
  • 6) отклонения в эксплуатации продукта (или функционировании процесса) могут быть снижены посредством использования нелинейных 3 зависимостей рабочих характеристик от параметров продукта (или процесса);
  • 7) для идентификации параметров продукта (или процесса), влияющих на снижение отклонений в эксплуатации (функционировании), должны использоваться статистически планируемые эксперименты.

Главное в философии Тагути - это повышение качества с одновременным снижением расходов. Согласно Тагути, экономический фактор (стоимость) и качество анализируются совместно. Оба фактора связаны общей характеристикой, называемой функцией потерь. Методология Тагути опирается на признание фактора неравноценности значений показателя внутри допуска. Функция потерь качества графически может быть представлена параболой с вершиной в точке оптимального значения (номинала), где потери равны нулю. При удалении от номинала потери возрастают и на границе поля достигают максимального значения - это потери от замены изделия. При анализе рассматриваются потери как со стороны потребителя, так и со стороны производителя. Заслуга Тагути заключается в том, что он сумел найти сравнительно простые и убедительные аргументы и приемы, которые сделали планирование эксперимента в области обеспечения качества реальностью. Именно в этом видит сам Тагути главную особенность своего подхода.

Идеи Тагути в течение 30 лет составляли базу инженерного образования в Японии, где издано его 7-томное собрание сочинений. В США эти методы стали известны в 1983 г. после того, как компания Ford Motor впервые начала знакомить с ними своих инженеров. Невнимание к методам Тагути - одна из причин технологического отставания многих производственных компаний США и Западной Европы от Японии. Методы Тагути позволяют проектировать изделия и процессы, нечувствительные к влиянию так называемых «шумов», т.е. переменных факторов, вызывающих разброс значений параметров, изменить которые трудно, невозможно или затратно. С экономической точки зрения любые, даже самые малые «шумы» уменьшают прибыль, поскольку при этом растут производственные издержки и затраты на гарантийное обслуживание. Такую устойчивость называют робастностью (англ, robust - крепкий, устойчивый). Тагути акцентирует внимание на этапах, предшествующих проектированию изделия, поскольку именно на этих этапах закладывается достижение робастности (см. параграф 1.2).

В заключение главы сделаем некоторые необходимые выводы. Во-первых, философия управления качеством, разработанная известными в мире специалистами, позволила изменить подход к управлению качеством как методологии производства продукции на основе технического контроля и перевести его в область человеческих взаимоотношений. Качество создается конкретными исполнителями и зависит исключительно от правильности их взаимодействий, четкости организации процессов, менталитета и приверженности персонала «культуре качества». Именно поэтому слово «мотивация», которой будет посвящена глава 4, является ключевым в управлении качеством.

Во-вторых, практически все «гуру» в области управления качеством подчеркивают приоритетную роль и важность личного участия высших руководителей организации в процессах улучшений. Сточки зрения мотивации важно не только участие - необходим личный пример следования философии управления качеством . Это касается как вопросов организации процессов и выделения необходимых ресурсов, так и методов проведения управленческого контроля (managerial control), повседневного поведения, организации рабочего времени, аккуратности в работе, нетерпимости к нарушениям и т.п. Поэтому важная часть в теории мотивации отводится именно позиции менеджеров, и, по мнению автора, преподавание курса «Управление качеством» просто невозможно без рассмотрения основных положений теории мотивации.

  • См. определение, данное Тагути термину «качество» (параграф 1.4). Тагути на основании статистических данных ломает очевидное, на первый взгляд, представление о том, что «вложил вдвое больше - получишь двойную выгоду». Касательно качества этот процесс гораздо более глубокий и требует четкой оценки затрат на обеспечение качества и выгод, получаемых от его повышения. Главный вывод - не следует стремиться к «абсолютному» качеству, иначе затраты возрастут до бесконечности. Требуется определить баланс (оптимум), когда качество удовлетворяет заказчиков, но не обходится безумно дорого для производителя. Может быть, даже более сложных зависимостей, чем просто квадратичная.
  • Альберт Швейцер (1875-1965) - известный немецкий теолог, музыкант, врач и философ, лауреат Нобелевской премии мира (1952) писал: «Личный пример - не просто лучший метод убеждения, он - единственный». Этот тезис, по мнению автора, не потеряет своей актуальности никогда, ни в одной сфере человеческих взаимоотношений. " Стимул - это внешняя причина, побуждающая людей к достижению цели (в Древней Греции стимулом называли остроконечную палку, с помощью которой погоняли домашний скот). В трудовом процессе стимул - материальное или моральное поощрение. В отличие от стимула мотив - это внутренняя побудительная сила, интерес, стремление, желание, основу которых составляют разносторонние человеческие потребности.

    Подход Тагучи позволяет ранжироватьприоритеты в программе управления качеством

    Количественно оценить улучшение качества

Японский ученый Г. Тагучи в 1960 г. высказал мысль, что качество не может более рассматриваться как мера соответствия требованиям проектной/конструкторской документации. Соблюдения качества в терминах границ допусков недостаточно. Необходимо постоянно стремиться к номиналу, к уменьшению разброса даже внутри границ, установленных проектом.

Г. Тагучи предложил, что удовлетворение требований допусков - отнюдь не достаточный критерий, чтобы судить о качестве. В конце концов, минимальными оказываются затраты на обслуживание продукта после его получения потребителем, т.е. минимизируются переделки, наладки и расходы по гарантийному обслуживанию. Управление, нацеленное лишь на достижение соответствия требованиям допусков, приводит в своим специфичным проблемам. Вместе с тем, нельзя не ометить, что допуски служили верную службу на протяжении многих лет: они позволяли производить предметы, которые были достаточно хороши в свою эпоху.

Разберем некоторые из проблем, которые могут возникнуть, если соответствие валов и отверстий не идеально. Если их сочленение соответствует более плотной посадке, в процессе работы машины возникнет избыточное трение. Для его преодоления потребуется большая мощность или расход топлива. При этом возможно возникновения локального перегрева, могущего привести к некоторым деформациям и плохой работе. Если посадка слишком свободная, то может происходить утечка смазки, которая может вызвать повреждение в других местах. Самое малое - замена смазки - может оказаться дорогостоящей процедурой как из-за стоимости самого смазывающего состава, так из-за необходимости более частой остановки машины для проведения техобслуживания. Слабая посадка может также привести к вибрациям, вызывающим шум, пульсирующие нагрузки, которые, весьма вероятно, приведут к уменьшению срока службы из-за отказов, вызванных напряжениями.

Очевидно необходим другой, качественно другой подход, который не требует искусственного определения годного и негодного, хорошего и плохого, дефектного и бездефектного. Такой подход, в свою очередь, предполагает, что существует наилучшее значение, и что любое отклонение от этого номинального значения вызывает некоторого вида потери или сложности в соответствии с типом зависимости, который был рассмотрен на примерах для диаметра валов и отверстий.

Функция потерь Тагучи как раз и предназначена для этого. Графически функция потерь Тагучи обычно представляется в форме:

Значение показателя качества откладывается на горизонтальной оси, а вертикальная ось показывает потери, или вред, или значимость, относящиеся к значениям показателей качества. Эти потери принимаются равными нулю, когда характеристика качества достигает своего номинального значения. Математический вид функции Тагучи представлен в заголовке графика, где x - измеряемое значение показателя качества; x0 - ее номинальное значение; L(x) - значение функции потерь Тагучи в точке х; с - коэффициент масштаба.

Основные элементы философии качества Тагути

Известный японский ученый Г. Тагути в 1950–1980-е годы предложил ряд методов оптимизации проектирования продукции и производства, которые позволяют существенно улучшить их качество и широко используются в ряде стран, особенно в Японии и США. К числу наиболее авторитетных фирм, использующих методы Тагути, относятся Toyota, Ford, General Electric, AT&T. В основе методов Тагути лежат известные статистические методы (статистическое планирование экспериментов, метод оптимума номинала и др.). Не все математические предпосылки, лежащие в основе его методов, признаются специалистами бесспорными.

Однако, поскольку методы Тагути являются многоступенчатыми, предполагают ряд проверок и корректировок, эти недостатки не снижают их эффективности.

К числу наиболее известных идей Тагути относятся следующие.

1. Качественными считаются только такие изделия, характеристики которых полностью совпадают с их номинальными значениями по чертежу. Любое отклонение приводит к потерям в стоимостном выражении, пропорциональным квадрату этого отклонения. Эта зависимость потерь от отклонений от номинала была названа функцией потерь качества (ФПК) и используется для выбора допусков на продукцию, обеспечивающих равенство потерь производителя и потребителя.

2. При проектировании изделие и процесс производства можно сделать робастными, то есть устойчивыми, нечувствительными к различным помехам при эксплуатации и производстве изделия. Главная ответственность за качество лежит на разработчике изделия, а не на организаторах производства.

3. Критерием правильности проектирования является предсказуемость модели объекта проектирования, которая оценивается отношением сигнал/шум и минимизацией дисперсии выходной характеристики объекта (рассчитывается с помощью дисперсионного анализа).

4. Проектирование изделия и процесса производства следует производить в 3 этапа: системное проектирование; параметрическое или оптимальное проектирование; проектирование допусков.

5. Для идентификации параметров изделия и процесса следует использовать статистическое планирование экспериментов, в том числе ортогональные планы (ортогональными планами эксперимента называются такие планы, которые при одновременном варьировании факторов позволяют оценить влияние каждого из них на показатель качества, независимо от влияния остальных ).

К числу наиболее важных принципов Тагути в области качества можно отнести следующие.

1. Важная мера качества изделия - общие потери, которые несет из-за него общество.

2. В конкурентной экономике условиями выживания в бизнесе являются одновременные непрерывные улучшения качества продукции и снижение затрат на ее производство и эксплуатацию.