В каких молекулах есть п связь. Химические связи

Мельчайшей частицей вещества является молекула, образующаяся в результате взаимодействия атомов, между которыми действуют химические связи или химическая связь. Учение о химической связи составляет основу теоретической химии. Химическая связь возникает при взаимодействии двух (иногда более) атомов. Образование связи происходит с выделением энергии.

Химическая связь – это взаимодействие, которое связывает отдельные атомы в молекулы, ионы, кристаллы.

Химическая связь по своей природе едина: она имеет электростатическое происхождение. Но в разнообразных химических соединениях химическая связь бывает различного типа; наиболее важные типы химической связи – это ковалентная (неполярная, полярная), ионная, металлическая. Разновидностями этих типов связи являются донорно-акцепторная, водородная и др. Между атомами металлов возникает металлическая связь.

Химическая связь, осуществляемая за счет образования общей, или поделенной, пары или нескольких пар электронов, называется ковалентной. В образование одной общей пары электронов каждый атом вносит по одному электрону, т.е. участвует «в равной доле» (Льюис, 1916 г.). Ниже приведены схемы образования химических связей в молекулах H2, F2, NH3 и CH4. Электроны, принадлежащие различным атомам, обозначены различными символами.

В результате образования химических связей каждый из атомов в молекуле имеет устойчивую двух- и восьмиэлектронную конфигурацию.

При возникновении ковалентной связи происходит перекрывание электронных облаков атомов с образованием молекулярного электронного облака, сопровождающееся выигрышем энергии. Молекулярное электронное облако располагается между центрами обоих ядер и обладает повышенной электронной плотностью по сравнению с плотностью атомного электронного облака.

Осуществление ковалентной связи возможно лишь в случае антипараллельных спинов неспаренных электронов, принадлежащих различным атомам. При параллельных спинах электронов атомы не притягиваются, а отталкиваются: ковалентная связь не осуществляется. Метод описания химической связи, образование которой связано с общей электронной парой, называется методом валентных связей (МВС).

Основные положения МВС

Ковалентная химическая связь образуется двумя электронами с противоположно направленными спинами, причем эта электронная пара принадлежит двум атомам.

Ковалентная связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака.

При написании структурных формул электронные пары, обусловливающие связь, часто изображаются черточками (вместо точек, изображающих обобществленные электроны).

Важное значение имеет энергетическая характеристика химической связи. При образовании химической связи общая энергия системы (молекулы) меньше энергии составных частей (атомов), т.е. ЕAB<ЕА+ЕB.

Валентность – это свойство атома химического элемента присоединять или замещать определенное число атомов другого элемента. С этой точки зрения валентность атома проще всего определять по числу атомов водорода, образующих с ним химические связи, или числом атомов водорода, замещаемых атомом этого элемента.

С развитием квантовомеханических представлений об атоме валентность стали определять числом неспаренных электронов, участвующих в образовании химических связей. Кроме неспаренных электронов, валентность атома также зависит от числа пустых и полностью заполненных орбиталей валентного электронного слоя.

Энергия связи – это энергия, которая выделяется при образовании молекулы из атомов. Энергию связи обычно выражают в кДж/моль (или ккал/моль). Это одна из важнейших характеристик химической связи. Более устойчива та система, которая содержит меньше энергии. Известно, например, что атомы водорода стремятся объединиться в молекулу. Это означает, что система, состоящая из молекул Н2 содержит меньше энергии, чем система, состоящая из такого же числа атомов Н, но не объединенных в молекулы.



Рис. 2.1 Зависимость потенциальной энергии Е системы из двух атомов водорода от межъядерного расстояния r: 1 - при образовании химической связи; 2 – без ее образования.

На рисунке 2.1 показана энергетическая кривая, характерная для взаимодействующих атомов водорода. Сближение атомов сопровождается выделением энергии, которое будет тем больше, чем больше перекроются электронные облака. Однако в обычных условиях, вследствие кулоновского отталкивания, невозможно достичь слияния ядер двух атомов. Значит, на каком-то расстоянии вместо притяжения атомов, будет происходить их отталкивание. Таким образом, расстояние между атомами r0, которому отвечает минимум на энергетической кривой, будет соответствовать длине химической связи (кривая 1). Если же спины электронов у взаимодействующих атомов водорода одинаковы, то будет происходить их отталкивание (кривая 2). Энергия связи для различных атомов изменяется в пределах 170–420 кДж/моль (40–100 ккал/моль).

Процесс перехода электрона на более высокий энергетический подуровень или уровень (т.е. процесс возбуждения или распаривания, о котором говорилось ранее) требует затраты энергии. При образовании химической связи происходит выделение энергии. Для того, чтобы химическая связь была устойчивой, необходимо, чтобы увеличение энергии атома за счет возбуждения было меньше энергии образующейся химической связи. Иными словами, необходимо, чтобы затраты энергии на возбуждение атомов были скомпенсированы выделением энергии за счет образования связи.

Химическая связь, кроме энергии связи, характеризуется длиной, кратностью и полярностью. Для молекулы, состоящей более чем из двух атомов, существенными являются величины углов между связями и полярность молекулы в целом.

Кратность связи определяется количеством электронных пар, связывающих два атома. Так, в этане Н3С–СН3 связь между атомами углерода одинарная, в этилене Н2С=СН2 – двойная, в ацетилене НСºСН – тройная. С увеличением кратности связи увеличивается энергия связи: энергия связи С–С составляет 339 кДж/моль, С=С - 611 кДж/моль и CºC - 833 кДж/моль.

Химическая связь между атомами обусловливается перекрыванием электронных облаков. Если перекрывание происходит вдоль линии, соединяющей ядра атомов, то такая связь называется сигма-связью (σ-связь). Она может быть образована за счет двух s-электронов, s- и p-электронов, двух px-электронов, s и d электронов (например

):

Химическая связь, осуществляемая одной электронной парой, называется одинарной. Одинарная связь – всегда σ-связь. Орбитали типа s могут образовывать только σ-связи.

Связь двух атомов может осуществляться более чем одной парой электронов. Такая связь называется кратной. Примером образования кратной связи может служить молекула азота. В молекуле азота px-орбитали образуют одну σ-связь. При образовании связи pz-орбиталями возникают две области


перекрывания – выше и ниже оси х:

Такая связь называется пи-связью (π-связь). Возникновение π-связи между двумя атомами происходит только тогда, когда они уже связаны σ-связью. Вторую π-связь в молекуле азота образуют ру-орбитали атомов. При образовании π-связей электронные облака перекрываются меньше, чем в случае σ-связей. Вследствие этого π-связи, как правило, менее прочны, чем σ-связи, образованные теми же атомными орбиталями.

р-орбитали могут образовывать как σ-, так и π-связи; в кратных связях одна из них обязательно является σ-связью:

.

Таким образом, в молекуле азота из трех связей одна - σ-связь и две - π-связи.

Длиной связи называется расстояние между ядрами связанных атомов. Длины связей в различных соединениях имеют величины десятых долей нанометра. При увеличении кратности длины связей уменьшаются: длины связей N–N , N=N и NºN равны 0,145; 0,125 и 0,109 нм (10-9 м), а длины связей C-C, C=C и CºC равны, соответственно, 0,154; 0,134 и 0,120 нм.

Между разными атомами чистая ковалентная связь может проявляться, если электроотрицаельность (ЭО) акие молекулы электросимметричны, т.е. «центры тяжести» положительных зарядов ядер и отрицательных зарядов электронов совпадают в одной точке, поэтому их называют неполярными.


Если соединяющиеся атомы обладают различной ЭО, то электронное облако, находящееся между ними, смещается из симметричного положения ближе к атому с большей ЭО:

Смещение электронного облака называется поляризацией. В результате односторонней поляризации центры тяжести положительных и отрицательных зарядов в молекуле не совпадают в одной точке, между ними возникает некоторое расстояние (l). Такие молекулы называются полярными или диполями, а связь между атомами в них называется полярной.

Полярная связь – разновидность ковалентной связи, претерпевшей незначительную одностороннюю поляризацию. Расстояние между «центрами тяжести» положительных и отрицательных зарядов в молекуле называется длиной диполя. Естественно, что чем больше поляризация, тем больше длина диполя и больше полярность молекул. Для оценки полярности молекул обычно пользуются постоянным дипольным моментом (Мр), представляющим собой произведение величины элементарного электрического заряда (e) на длину диполя (l), т.е.

.

Природа химической связи. Квантово-механическая трактовка механизма образования химической связи.

Типы связей: ковалентная, ионная, координационная (донорно-акцепторная), металлическая, водородная.

Характеристики связи: энергия и длина связи, направленность, насыщенность, электрические дипольные моменты, эффективные заряды атомов, степень ионности.

Метод валентных связей (ВС). Сигма- и пи-связи. Типы гибридизации атомных орбиталей и геометрия молекул. Неподеленные электронные пары молекул.

Метод молекулярных орбиталей (МО) и особенности использованной в нем волновой функции. Связывающие и разрыхляющие молекулярные орбитали. Принципы заполнения их электронами, порядок и энергия связей. Связи в двухатомных гомоядерных молекулах.

Свойства химических связей в твердом состоянии вещества. Свойства ионных кристаллов. Металлическая связь и строение металлических кристаллов. Специфические свойства металлов. Молекулярные кристаллы и их свойства.

Применение теории химической связи в химии и биологии. Энергия ковалентных связей и энергетика химических реакций. Предсказание геометрии молекул. Гибкость биомолекул как результат свободного вращения вокруг s-связей. Взаимодействие биомолекул с водой как следствие образования водородных связей и взаимодействия диполей воды с атомами, имеющими значительные заряды.

Вариант 1

1. Какую связь называют ионной? Покажите механизм возникновения ионной связи на примере образования фторида калия. Можно ли говорить о молекуле CI для твердого состояния вещества?

2. В каких молекулах из перечисленных ниже имеется p-связь? CH 4 ; N 2 ; BeCl 2 ; CO 2 . Ответ подтвердите графическими формулами.

3. Каков механизм переменной валентности элементов? Почему сера проявляет переменную валентность, кислород всегда не более чем двухвалентен?

4. Обозначьте тип гибридизации орбиталей в молекулах CH 4 , MgCl 2 , BF 3 .

Вариант 2

1. В чем заключается особенность типично ковалентной связи? Покажите механизм возникновения этой связи в обобщенно-схематическом виде.

2. Из числа перечисленных ниже соединений выпишите двумя столбцами молекулы с одинарной и кратной связью. Те, в которых имеются π-связь, подчеркните.

C 2 H 4 , NH 3 , N 2 , CCl 4 , SO 2 , H 2 O.

3. Как влияет характер химической связи атомов на свойства веществ (способность к диссоциации, t и т. д.)?

4. Изобразите рисунком процесс Sp 2 -гибридизации. Приведите пример соответствующей молекулы и укажите ее геометрию.

Вариант 3

1. Как изменяется запас энергии молекул по сравнению с запасом энергии разрозненных атомов? Какая молекула прочнее: H 2 (E CB = 431,8 кДж) или N 2 (E CB = 945 кДж)?

2. Чем определяется величина ковалентности элемента? Приведите графические формулы молекул N 2 , NH 3 , NO и определите в каждой из них ковалентность азота.

3. Что называют гибридизацией орбиталей? Нарисуйте одну гибридную орбиталь и объясните, почему гибридные связи образуют более прочную связь, чем негибридные.

4. Дайте общую характеристику кристаллических веществ и назовите типы кристаллических решеток.

Вариант 4

1. Перечислите основные виды химических связей и приведите по одному примеру соответствующих этим видам связи химических соединений.

2. Изобразите рисунками два возможных способа перекрывания р-электронных облаков.

3. Что называют длиной диполя и дипольным моментом молекулы? От чего зависит величина дипольного момента?

4. Из перечисленных ниже молекул выпишите те, в которых имеются Sp-гибридные орбитали, и укажите их геометрию.

BeCl 2 , BCl 3 , H 2 O, C 2 H 2 .

Вариант 5

1. В чем особенность донорно-акцепторной связи? Покажите ее механизм в обобщенно-схематической форме и на примере.

2. От чего зависит величина ковалентности атома в молекуле? Имеет ли ковалентность знак? Определите ковалентность серы в молекуле H 2 S и ионе по их графическим формулам.

3. Сколько σ- и π-связей в молекуле N+, ионе ?

4. Почему молекула CaCl 2 (в парах) имеет линейную форму, молекула BCl 3 треугольную – плоскую, а молекула CCl 4 – тетраэдрическую?

Вариант 6

1. Какова физическая природа типично ковалентной связи в соответствии с представлениями волновой механики? Какими должны быть спины электронов взаимодействующих атомов, чтобы они могли вступить друг с другом в химическое взаимодействие?

2. Как современная теория химической связи объясняет переменную валентность элементов? Приведите пример.

3. Объясните с помощью графических формул? почему при наличии полярных связей в молекулах CO 2 и SO 2 одна из них неполярна, а другая полярна.

4. Выпишите химические соединения, в образовании которых участвуют Sp 2 -гибридные орбитали C 2 H 4 ; CH 4 ; BCl 3 ; C 2 H 2 .

Вариант 7

1. В каких случаях и как возникает водородная связь? Приведите примеры.

2. Выпишите те из приведенных ниже молекул, в которых имеется типично-ковалентная связь между атомами PCl 3 ; N 2 ; K 2 S; SO 3 . Приведите их графические формулы.

3. Каким принципам и правилам подчиняется заполнение и атомных, и молекулярных орбиталей? Как определяется число химических связей в молекуле по методу МО?

4. Какие из перечисленных молекул имеют угловую форму? CO 2 , SO 2 , H 2 O.

Вариант 8

1. В чем заключаются особенности металлической связи?

2. Сколько холостых электронов у атомов Al и Sе в основном состоянии? Какой процесс обусловливает возможность повышения ковалентности этих элементов до величины, соответствующей номеру их группы в системе Д. И. Менделеева?

3. В каких из приведенных молекул абсолютное значение, степени окисления и ковалентность подчеркнутых элементов не совпадают?

N 2 , H 2 , NH 3 , C 2 H 2 .

Ответ обоснуйте графическими формулами.

4. Изобразите схематически процесс Sp 3 -гибридизации орбиталей. Приведите примермолекулы, в которой осуществляется этот тип гибридизации.

Вариант 9

1. Для каких из перечисленных ниже молекул возможны межмолекулярные водородные связи и почему? СаН 2 , Н 2 О, HF 2 , CH 4 .

2. От чего зависит степень поляризации связи между атомами в молекуле и что является ее количественной характеристикой?

3. Сколько σ- и π-связей в молекуле СО 2 ? Какой здесь тип гибридизации орбиталей атома углерода?

4. Какие из перечисленных веществ имеют в твердом состоянии молекулярные, а какие – ионные кристаллические решетки?

NaJ, H 2 O, K 2 SO 4 , CO 2 , J 2 .

Вариант 10

1. Изобразите по методу валентных схем (ВС) строение молекул Н 2 , N 2 и NH 3 . Каков тип связи между атомами этих молекул? В какой из молекул имеются π-связи?

2. По типу химической связи определите, у какого из перечисленных ниже веществ а) наибольшая способность к диссоциации; б) самая низкая температура плавления; в) самая высокая температура кипения. HF; Cl 2 .

3. В чем заключается направленность ковалентной связи? Покажите на примере строения молекулы воды, как влияет направленность связи на геометрию молекулы.

4. В каких из перечисленных молекул углы связи между атомами равны 180°?. Какой тип гибридизации орбиталей это объясняет?

CH 4 , BF 3 , MgCl 2 , C 2 H 2 .

Вариант 11

1. Какие электроны: спаренные или холостые – определяют возможное число типично-ковалентных связей атома в данном энергетическом состоянии? В качестве примера рассмотрите атом серы.

2. Чем отличаются друг от друга σ- и π-связи? Могут ли гибридные орбитали образовывать π-связь? Сравните прочность π- и σ-связей.

3. Изобразите рисунком схему Sр-гибридизации орбиталей и выпишите те из приведенных молекул, в которых имеется этот тип гибридизации.

BeCl 2 , CH 4 , AlF 3 , C 2 H 2 .

4. Дайте общую характеристику особенностей аморфных тел.

Вариант 12

1. Чем отличаются ковалентно-неполярная и ковалентно-полярная связь? Объясните на примерах, в каких случаях они возникают.

2. Укажите типы связей в следующих соединениях и ионах:

CsF, 2+ , Cl 2 , SO 3 .

3. Сколько гибридных орбиталей образуется при Sр 3 -гибридизации? Какова геометрия молекулы СН 4 , в которой этот тип гибридизации осуществляется?

4. Какие известны типы межмолекулярных взаимодействий?

Вариант 13

1. По величинам электроотрицательности атомов серы, хлора и натрия определите, какие из них образуют друг с другом ионную, а какие – ковалентную связь.

2. Перечертите таблицу и заполните ее для подчеркнутых атомов.

3. Почему фосфор может образовывать соединения PCl 3 и PCl 5 , а азот – только NCl 3 ? К какому атому смещена во всех этих молекулах электронная пара?

4. Какие из перечисленных молекул имеют форму тетраэдра и почему?

Вариант 14

1. Чем определяется величина электровалентности элемента в ионных соединениях? Обозначьте электровалентность в соединениях K 2 S, MgCl 2 , AlCl 3 . Совпадает ли она со степенью окисления?

2. Чем отличается метод молекулярных орбиталей (МО) от метода валентных связей (ВС)? Приведите схемы образования молекулы водорода по методу ВС и методу МО.

3. Какие типы связей имеются в молекуле NH 4 Cl? Покажите их на электронной схеме строения молекулы.

4. Укажите типы гибридизации орбиталей и геометрию молекул BeF 2 , СH 4 , BCl 3 .

Для σ-связей характерно такое расположение перекрывающихся электронных облаков, при котором ось облака совпадает с линией, соединяющей центры атомов.

Пусть имеется молекула CR 4 ; причем все связи в ней строго ковалентны; введем в эту молекулу заместитель X так, чтобы получилось соединение CR 3 X. Теперь электронная плотность распределена уже иначе: атом углерода или приобрел, или потерял часть заряда электронного облака - стал или положительным, или отрицательным по сравнению с его состоянием в исходной молекуле. Соответственно и атом заместителя также получил какой-то заряд. Условились обозначать этот эффект термином «индуктивность», а знак индуктивности принимать таким, чтобы он совпадал со знаком заряда, возникшего на атоме заместителя.

Индуктивный эффект положителен (+I), если

Индуктивный эффект отрицателен (-I), если

где δ - избыточный заряд на каждом из атомов. Стрелка показывает направления смещения электронной плотности. Индуктивный эффект не ограничивается одной связью; он распространяется по связям, быстро ослабевая. Индуктивный эффект растет с увеличением заряда, создаваемого заместителем. Энергичное притяжение электронов, характерное для металлоидных атомов, выражается в сильном отрицательном индуктивном эффекте (-I-эффект); наоборот, отрицательный ион кислорода склонен отдавать электроны и проявляет положительный (+I-эффект). Ненасыщенные связи С-С характеризуются отрицательным эффектом, т, е. они притягивают «на связь» электроны; радикалы метил- и н-алкилы обнаруживают положительный эффект.

Индуктивные эффекты вызывают смещение плотности σ-электронов и позволяют в общих чертах предвидеть, где именно в данной молекуле можно ожидать сосредоточивание отрицательных, а где положительных зарядов. Электронный «остов» молекулы не абсолютно жесткий, и, хотя σ-связи под влиянием различных соседних групп более или менее поляризованы, приближение к данной связи какого-либо постороннего иона или действие внешнего поля могут усилить или ослабить поляризацию. Этот дополнительный эффект называют динамическим эффектом; он, в частности, проявляется в особенно легкой деформируемости связей углерод - иод по сравнению с деформируемостью связей углерод - фтор или хлор.

.Сравнительная характеристика ММО и МВС

Оба квантовомеханических подхода к описанию химической связи √ ММО и МВС √ приближенны, ММО придает преувеличенное значение делокализации электрона в молекуле и основывается на одноэлектронных волновых функциях √ молекулярных орбиталях. МВС преувеличивает роль локализации электронной плотности и основывается на том, что элементарная связь осуществляется только парой электронов между двумя атомами.

Сравнивая МВС м ММО, следует отметить, что достоинством первого является его наглядность: насыщаемость связи объясняется как максимальная ковалентность, направленность вытекает из направленности атомных и гибридных орбиталей; дипольный момент молекулы складывается из дипольных моментов связей, разности ОЭО атомов, образующих молекулу, и наличия неподеленных электронных пар.

Однако существование некоторых соединений невозможно объяснить с позиций МВС. Это электронодефицитные соединения (B 2 H 6 , NO,) и соединения благородных газов. Их строение легко объясняет ММО. Устойчивость молекулярных ионов и атомов в сравнении с молекулами легко предсказывается с позиции ММО. И, наконец, магнетизм и окраска вещества также легко объясняются ММО.

Количественные расчеты в ММО, несмотря на свою громоздкость, все же гораздо проще, чем в МВС. Поэтому в настоящее время в квантовой химии МВС почти не применяется. В то же время качественно выводы МВС гораздо нагляднее и шире используются экспериментаторами, чем ММО. Основанием для этого служит тот факт, что реально в молекуле вероятность пребывания данного электрона между связанными атомами гораздо больше, чем на других атомах, хотя и там она не равна нулю. В конечном счете, выбор метода определяется объектом исследования и поставленной задачей.

26. Ковалентная связь (атомная связь, гомеополярная связь) - химическая связь, образованная перекрытием (обобществлением) пары валентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой .

Характерные свойства ковалентной связи - направленность, насыщаемость, полярность, поляризуемость - определяют химические и физические свойства соединений.

Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.

Насыщаемость - способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные.

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

Образование связи

Простая ковалентная связь образуется из двух неспаренных валентных электронов, на один от каждого атома:

A· + ·В → А: В

В результате обобществления электроны образуют заполненный энергетический уровень. Связь образуется, если их суммарная энергия на этом уровне будет меньше, чем в первоначальном состоянии (а разница в энергии будет ни чем иным, как энергией связи).

Заполнение электронами атомных (по краям) и молекулярных (в центре) орбиталей в молекуле H 2 . Вертикальная ось соответствует энергетическому уровню, электроны обозначены стрелками, отражающими их спины.

Согласно теории молекулярных орбиталей, перекрывание двух атомных орбиталей приводит в простейшем случае к образованию двух молекулярных орбиталей (МО): связывающей МО и антисвязывающей (разрыхляющей) МО . Обобществленные электроны располагаются на более низкой по энергии связывающей МО.

]Виды ковалентной связи

Существуют три вида ковалентной химической связи, отличающихся механизмом образования:

1. Простая ковалентная связь . Для ее образования каждый из атомов предоставляет по одному неспаренному электрону. При образовании простой ковалентной связи формальные заряды атомов остаются неизменными.

§ Если атомы, образующие простую ковалентную связь, одинаковы, то истинные заряды атомов в молекуле также одинаковы, поскольку атомы, образующие связь, в равной степени владеют обобществлённой электронной парой. Такая связь называетсянеполярной ковалентной связью . Такую связь имеют простые вещества, например: О 2 , N 2 , Cl 2 . Но не только неметаллы одного типа могут образовывать ковалентную неполярную связь. Ковалентную неполярную связь могут образовывать также элементы-неметаллы, электроотрицательность которых имеет равное значение, например в молекуле PH 3 связь является ковалентной неполярной, так как ЭО водорода равна ЭО фосфора.

§ Если атомы различны, то степень владения обобществленной парой электронов определяется различием в электроотрицательностях атомов. Атом с большей электроотрицательностью сильнее притягивает к себе пару электронов связи, и его истинный заряд становится отрицательным. Атом с меньшей электроотрицательностью приобретает, соответственно, такой же по величине положительный заряд. Если соединение образуется между двумя различныминеметаллами, то такое соединение называется ковалентной полярной связью .

2. Донорно-акцепторная связь . Для образования этого вида ковалентной связи оба электрона предоставляет один из атомов - донор . Второй из атомов, участвующий в образовании связи, называется акцептором . В образовавшейся молекуле формальный заряд донора увеличивается на единицу, а формальный заряд акцептора уменьшается на единицу.

3. Семиполярная связь .Её можно рассматривать как полярную донорно-акцепторную связь. Этот вид ковалентной связи образуется между атомом, обладающим неподелённой парой электронов (азот, фосфор, сера, галогены и т. п.) и атомом с двумя неспаренными электронами (кислород, сера). Образование семиполярной связи протекает в два этапа:

1. Перенос одного электрона от атома с неподелённой парой электронов к атому с двумя неспаренными электронами. В результате атом с неподелённой парой электронов превращается в катион-радикал (положительно заряженная частица с неспаренным электроном), а атом с двумя неспаренными электронами - в анион-радикал (отрицательно заряженная частица с неспаренным электроном).

2. Обобществление неспаренных электронов (как в случае простой ковалентной связи).

При образовании семиполярной связи атом с неподелённой парой электронов увеличивает свой формальный заряд на единицу, а атом с двумя неспаренными электронами понижает свой формальный заряд на единицу.

]σ-связь и π-связь

Сигма (σ)-, пи ()-связи - приближенное описание видов ковалентных связей в молекулах различных соединений, σ-связь характеризуется тем, что плотность электронного облака максимальна вдоль оси, соединяющей ядра атомов. При образовании -связи осуществляется так называемое боковое перекрывание электронных облаков, и плотность электронного облака максимальна «над» и «под» плоскостью σ-связи. Для примера возьмем этилен, ацетилен и бензол.

В молекуле этилена С 2 Н 4 имеется двойная связь СН 2 =СН 2 , его электронная формула: Н:С::С:Н. Ядра всех атомов этилена расположены в одной плоскости. Три электронных облака каждого атома углерода образуют три ковалентные связи с другими атомами в одной плоскости (с углами между ними примерно 120°). Облако четвертого валентного электрона атома углерода располагается над и под плоскостью молекулы. Такие электронные облака обоих атомов углерода, частично перекрываясь выше и ниже плоскости молекулы, образуют вторую связь между атомами углерода. Первую, более прочную ковалентную связь между атомами углерода называют σ-связью; вторую, менее прочную ковалентную связь называют -связью.

В линейной молекуле ацетилена

Н-С≡С-Н (Н: С::: С: Н)

имеются σ-связи между атомами углерода и водорода, одна σ-связь между двумя атомами углерода и две -связи между этими же атомами углерода. Две -связи расположены над сферой действия σ-связи в двух взаимно перпендикулярных плоскостях.

Все шесть атомов углерода циклической молекулы бензола С 6 H 6 лежат в одной плоскости. Между атомами углерода в плоскости кольца действуют σ-связи; такие же связи имеются у каждого атома углерода с атомами водорода. На осуществление этих связей атомы углерода затрачивают по три электрона. Облака четвертых валентных электронов атомов углерода, имеющих форму восьмерок, расположены перпендикулярно к плоскости молекулы бензола. Каждое такое облако перекрывается одинаково с электронными облаками соседних атомов углерода. В молекуле бензола образуются не три отдельные -связи, а единая -электронная система из шести электронов, общая для всех атомов углерода. Связи между атомами углерода в молекуле бензола совершенно одинаковые.

\]Примеры веществ с ковалентной связью

Простой ковалентной связью соединены атомы в молекулах простых газов (Н 2 , Cl 2 и др.) и соединений (Н 2 О, NH 3 , CH 4 , СО 2 , HCl и др.). Соединения с донорно-акцепторной связью - аммония NH 4 + , тетрафторборат анион BF 4 − и др. Соединения с семиполярной связью - закись азота N 2 O, O − -PCl 3 + .

Кристаллы с ковалентной связью диэлектрики или полупроводники. Типичными примерами атомных кристаллов (атомы в которых соединены между собой ковалентными (атомными) связями могут служить алмаз, германий и кремний.

Единственным известным человеку веществом с примером ковалентной связи между металлом и углеродом является цианокобаламин, известный как витамин B12.

Темы кодификатора ЕГЭ: Ковалентная химическая связь, ее разновидности и механизмы образования. Характеристики ковалентной связи (полярность и энергия связи). Ионная связь. Металлическая связь. Водородная связь

Внутримолекулярные химические связи

Сначала рассмотрим связи, которые возникают между частицами внутри молекул. Такие связи называют внутримолекулярными .

Химическая связь между атомами химических элементов имеет электростатическую природу и образуется за счет взаимодействия внешних (валентных) электронов , в большей или меньшей степени удерживаемых положительно заряженными ядрами связываемых атомов.

Ключевое понятие здесь – ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ . Именно она определяет тип химической связи между атомами и свойства этой связи.

– это способность атома притягивать (удерживать) внешние (валентные) электроны . Электроотрицательность определяется степенью притяжения внешних электронов к ядру и зависит, преимущественно, от радиуса атома и заряда ядра.

Электроотрицательность сложно определить однозначно. Л.Полинг составил таблицу относительных электроотрицательностей (на основе энергий связей двухатомных молекул). Наиболее электроотрицательный элемент – фтор со значением 4 .

Важно отметить, что в различных источниках можно встретить разные шкалы и таблицы значений электроотрицательности. Этого не стоит пугаться, поскольку при образовании химической связи играет роль атомов, а она примерно одинакова в любой системе.

Если один из атомов в химической связи А:В сильнее притягивает электроны, то электронная пара смещается к нему. Чем больше разность электроотрицательностей атомов, тем сильнее смещается электронная пара.

Если значения электроотрицательностей взаимодействующих атомов равны или примерно равны: ЭО(А)≈ЭО(В) , то общая электронная пара не смещается ни к одному из атомов: А: В . Такая связь называется ковалентной неполярной.

Если электроотрицательности взаимодействующих атомов отличаются, но не сильно (разница электроотрицательностей примерно от 0,4 до 2: 0,4<ΔЭО<2 ), то электронная пара смещается к одному из атомов. Такая связь называется ковалентная полярная .

Если электроотрицательности взаимодействующих атомов отличаются существенно (разница электроотрицательностей больше 2: ΔЭО>2 ), то один из электронов практически полностью переходит к другому атому, с образованием ионов . Такая связь называется ионная .

Основные типы химических связей — ковалентная , ионная и металлическая связи. Рассмотрим их подробнее.

Ковалентная химическая связь

Ковалентная связь этохимическая связь, образованная за счет образования общей электронной пары А:В . При этом у двух атомов перекрываются атомные орбитали. Ковалентная связь образуется при взаимодействии атомов с небольшой разницей электроотрицательностей (как правило, между двумя неметаллами ) или атомов одного элемента.

Основные свойства ковалентных связей

  • направленность ,
  • насыщаемость ,
  • полярность ,
  • поляризуемость .

Эти свойства связи влияют на химические и физические свойства веществ.

Направленность связи характеризует химическое строение и форму веществ. Углы между двумя связями называются валентными. Например, в молекуле воды валентный угол H-O-H равен 104,45 о, поэтому молекула воды — полярная, а в молекуле метана валентный угол Н-С-Н 108 о 28′.

Насыщаемость — это спосбность атомов образовывать ограниченное число ковалентных химических связей. Количество связей, которые способен образовывать атом, называется .

Полярность связи возникает из-за неравномерного распределения электронной плотности между двумя атомами с различной электроотрицательностью. Ковалентные связи делят на полярные и неполярные.

Поляризуемость связи — это способность электронов связи смещаться под действием внешнего электрического поля (в частности, электрического поля другой частицы). Поляризуемость зависит от подвижности электронов. Чем дальше электрон находится от ядра, тем он более подвижен, соответственно и молекула более поляризуема.

Ковалентная неполярная химическая связь

Существует 2 вида ковалентного связывания – ПОЛЯРНЫЙ и НЕПОЛЯРНЫЙ .

Пример . Рассмотрим строение молекулы водорода H 2 . Каждый атом водорода на внешнем энергетическом уровне несет 1 неспаренный электрон. Для отображения атома используем структуру Льюиса – это схема строения внешнего энергетического уровня атома, когда электроны обозначаются точками. Модели точечных структур Люьиса неплохо помогают при работе с элементами второго периода.

H . + . H = H:H

Таким образом, в молекуле водорода одна общая электронная пара и одна химическая связь H–H. Эта электронная пара не смещается ни к одному из атомов водорода, т.к. электроотрицательность у атомов водорода одинаковая. Такая связь называется ковалентной неполярной .

Ковалентная неполярная (симметричная) связь – это ковалентная связь, образованная атомами с равной элетроотрицательностью (как правило, одинаковыми неметаллами) и, следовательно, с равномерным распределением электронной плотности между ядрами атомов.

Дипольный момент неполярных связей равен 0.

Примеры : H 2 (H-H), O 2 (O=O), S 8 .

Ковалентная полярная химическая связь

Ковалентная полярная связь – это ковалентная связь, которая возникает между атомами с разной электроотрицательностью (как правило, разными неметаллами ) и характеризуется смещением общей электронной пары к более электроотрицательному атому (поляризацией).

Электронная плотность смещена к более электроотрицательному атому – следовательно, на нем возникает частичный отрицательный заряд (δ-), а на менее электроотрицательном атоме возникает частичный положительный заряд (δ+, дельта +).

Чем больше различие в электроотрицательностях атомов, тем выше полярность связи и тем больше дипольный момент . Между соседними молекулами и противоположными по знаку зарядами действуют дополнительные силы притяжения, что увеличивает прочность связи.

Полярность связи влияет на физические и химические свойства соединений. От полярности связи зависят механизмы реакций и даже реакционная способность соседних связей. Полярность связи зачастую определяет полярность молекулы и, таким образом, непосредственно влияет на такие физические свойства как температуре кипения и температура плавления, растворимость в полярных растворителях.

Примеры: HCl, CO 2 , NH 3 .

Механизмы образования ковалентной связи

Ковалентная химическая связь может возникать по 2 механизмам:

1. Обменный механизм образования ковалентной химической связи – это когда каждая частица предоставляет для образования общей электронной пары один неспаренный электрон:

А . + . В= А:В

2. образования ковалентной связи – это такой механизм, при котором одна из частиц предоставляет неподеленную электронную пару, а другая частица предоставляет вакантную орбиталь для этой электронной пары:

А: + B= А:В

При этом один из атомов предоставляет неподеленную электронную пару (донор ), а другой атом предоставляет вакантную орбиталь для этой пары (акцептор ). В результате образования связи оба энергия электронов уменьшается, т.е. это выгодно для атомов.

Ковалентная связь, образованная по донорно-акцепторному механизму, не отличается по свойствам от других ковалентных связей, образованных по обменному механизму. Образование ковалентной связи по донорно-акцепторному механизму характерно для атомов либо с большим числом электронов на внешнем энергетическом уровне (доноры электронов), либо наоборот, с очень малым числом электронов (акцепторы электронов). Более подробно валентные возможности атомов рассмотрены в соответствующей .

Ковалентная связь по донорно-акцепторному механизму образуется:

– в молекуле угарного газа CO (связь в молекуле – тройная, 2 связи образованы по обменному механизму, одна – по донорно-акцепторному): C≡O;

– в ионе аммония NH 4 + , в ионах органических аминов , например, в ионе метиламмония CH 3 -NH 2 + ;

– в комплексных соединениях , химическая связь между центральным атомом и группами лигандов, например, в тетрагидроксоалюминате натрия Na связь между алюминием и гидроксид-ионами;

– в азотной кислоте и ее солях — нитратах: HNO 3 , NaNO 3 , в некоторых других соединениях азота;

– в молекуле озона O 3 .

Основные характеристики ковалентной связи

Ковалентная связь, как правило, образуется между атомами неметаллов. Основными характеристиками ковалентной связи являются длина, энергия, кратность и направленность.

Кратность химической связи

Кратность химической связи — это число общих электронных пар между двумя атомами в соединении . Кратность связи достаточно легко можно определить из значения атомов, образующих молекулу.

Например , в молекуле водорода H 2 кратность связи равна 1, т.к. у каждого водорода только 1 неспаренный электрон на внешнем энергетическом уровне, следовательно, образуется одна общая электронная пара.

В молекуле кислорода O 2 кратность связи равна 2, т.к. у каждого атома на внешнем энергетическом уровне есть по 2 неспаренных электрона: O=O.

В молекуле азота N 2 кратность связи равна 3, т.к. между у каждого атома по 3 неспаренных электрона на внешнем энергетическом уровне, и атомы образуют 3 общие электронные пары N≡N.

Длина ковалентной связи

Длина химической связи – это расстояние между центрами ядер атомов, образующих связь. Ее определяют экспериментальными физическими методами. Оценить величину длины связи можно примерно, по правилу аддитивности, согласно которому длина связи в молекуле АВ приблизительно равна полусумме длин связей в молекулах А 2 и В 2:

Длину химической связи можно примерно оценить по радиусам атомов , образующих связь, или по кратности связи , если радиусы атомов не сильно отличаются.

При увеличении радиусов атомов, образующих связь, длина связи увеличится.

Например

При увеличении кратности связи между атомами (атомные радиусы которых не отличаются, либо отличаются незначительно) длина связи уменьшится.

Например . В ряду: C–C, C=C, C≡C длина связи уменьшается.

Энергия связи

Мерой прочности химической связи является энергия связи. Энергия связи определяется энергией, необходимой для разрыва связи и удаления атомов, образующих эту связь, на бесконечно большое расстояние друг от друга.

Ковалентная связь является очень прочной. Ее энергия составляет от нескольких десятков до нескольких сотен кДж/моль. Чем больше энергия связи, тем больше прочность связи, и наоборот.

Прочность химической связи зависит от длины связи, полярности связи и кратности связи. Чем длиннее химическая связь, тем легче ее разорвать, и тем меньше энергия связи, тем ниже ее прочность. Чем короче химическая связь, тем она прочнее, и тем больше энергия связи.

Например , в ряду соединений HF, HCl, HBr слева направо прочность химической связи уменьшается , т.к. увеличивается длина связи.

Ионная химическая связь

Ионная связь — это химическая связь, основанная на электростатическом притяжении ионов .

Ионы образуются в процессе принятия или отдачи электронов атомами. Например, атомы всех металлов слабо удерживают электроны внешнего энергетического уровня. Поэтому для атомов металлов характерны восстановительные свойства — способность отдавать электроны.

Пример . Атом натрия содержит на 3 энергетическом уровне 1 электрон. Легко отдавая его, атом натрия образует гораздо более устойчивый ион Na + , с электронной конфигурацией благородного газа неона Ne. В ионе натрия содержится 11 протонов и только 10 электронов, поэтому суммарный заряд иона -10+11 = +1:

+11Na ) 2 ) 8 ) 1 — 1e = +11Na +) 2 ) 8

Пример . Атом хлора на внешнем энергетическом уровне содержит 7 электронов. Чтобы приобрести конфигурацию стабильного инертного атома аргона Ar, хлору необходимо присоединить 1 электрон. После присоединения электрона образуется стабильный ион хлора, состоящий из электронов. Суммарный заряд иона равен -1:

+17Cl ) 2 ) 8 ) 7 + 1e = +17Cl ) 2 ) 8 ) 8

Обратите внимание:

  • Свойства ионов отличаются от свойств атомов!
  • Устойчивые ионы могут образовывать не только атомы , но и группы атомов . Например: ион аммония NH 4 + , сульфат-ион SO 4 2- и др. Химические связи, образованные такими ионами, также считаются ионными;
  • Ионную связь, как правило, образуют между собой металлы и неметаллы (группы неметаллов);

Образовавшиеся ионы притягиваются за счет электрического притяжения: Na + Cl — , Na 2 + SO 4 2- .

Наглядно обобщим различие между ковалентными и ионным типами связи :

Металлическая связь — это связь, которую образуют относительно свободные электроны между ионами металлов , образующих кристаллическую решетку.

У атомов металлов на внешнем энергетическом уровне обычно расположены от одного до трех электронов . Радиусы у атомов металлов, как правило, большие — следовательно, атомы металлов, в отличие от неметаллов, достаточно легко отдают наружные электроны, т.е. являются сильными восстановителями .

Отдавая электроны, атомы металлов превращаются в положительно заряженные ионы . Оторвавшиеся электроны относительно свободно перемещаются между положительно заряженными ионами металлов. Между этими частицами возникает связь , т.к. общие электроны удерживают катионы металлов, расположенные слоями, вместе , создавая таким образом достаточно прочную металлическую кристаллическую решетку . При этом электроны непрерывно хаотично двигаются, т.е. постоянно возникают новые нейтральные атомы и новые катионы.

Межмолекулярные взаимо-действия

Отдельно стоит рассмотреть взаимодействия, возникающие между отдельными молекулами в веществе — межмолекулярные взаимодействия . Межмолекулярные взаимодействия — это такой вид взаимодействия между нейтральными атомами, при котором не появляеются новые ковалентные связи. Силы взаимодействия между молекулами обнаружены Ван-дер Ваальсом в 1869 году, и названы в честь него Ван-дар-Ваальсовыми силами . Силы Ван-дер-Ваальса делятся на ориентационные , индукционные и дисперсионные . Энергия межмолекулярных взаимодейстий намного меньше энергии химической связи.

Ориентационные силы притяжения возникают между полярными молекулами (диполь-диполь взаимодействие). Эти силы возникают между полярными молекулами. Индукционные взаимодействия — это взаимодействие между полярной молекулой и неполярной. Неполярная молекула поляризуется из-за действия полярной, что и порождает дополнительное электростатическое притяжение.

Особый вид межмолекулярного взаимодействия — водородные связи. — это межмолекулярные (или внутримолекулярные) химические связи, возникающие между молекулами, в которых есть сильно полярные ковалентные связи — H-F, H-O или H-N . Если в молекуле есть такие связи, то между молекулами будут возникать дополнительные силы притяжения .

Механизм образования водородной связи частично электростатический, а частично — донорно–акцепторный. При этом донором электронной пары выступают атом сильно электроотрицательного элемента (F, O, N), а акцептором — атомы водорода, соединенные с этими атомами. Для водородной связи характерны направленность в пространстве и насыщаемость .

Водородную связь можно обозначать точками: Н ··· O. Чем больше электроотрицательность атома, соединенного с водородом, и чем меньше его размеры, тем крепче водородная связь . Она характерна прежде всего для соединений фтора с водородом , а также кислорода с водородом , в меньшей степени азота с водородом .

Водородные связи возникают между следующими веществами:

фтороводород HF (газ, раствор фтороводорода в воде — плавиковая кислота), вода H 2 O (пар, лед, жидкая вода):

раствор аммиака и органических аминов — между молекулами аммиака и воды;

органические соединения, в которых связи O-H или N-H : спирты, карбоновые кислоты, амины, аминокислоты, фенолы, анилин и его производные, белки, растворы углеводов — моносахаридов и дисахаридов.

Водородная связь оказывает влияние на физические и химические свойства веществ. Так, дополнительное притяжение между молекулами затрудняет кипение веществ. У веществ с водородными связями наблюдается аномальное повышение тепературы кипения.

Например , как правило, при повышении молекулярной массы наблюдается повышение температуры кипения веществ. Однако в ряду веществ H 2 O-H 2 S-H 2 Se-H 2 Te мы не наблюдаем линейное изменение температур кипения.

А именно, у воды температура кипения аномально высокая — не меньше -61 о С, как показывает нам прямая линия, а намного больше, +100 о С. Эта аномалия объясняется наличием водородных связей между молекулами воды. Следовательно, при обычных условиях (0-20 о С) вода является жидкостью по фазовому состоянию.

Ковалентная связь. Строение молекулы воды

Задание 61.
Какую химическую связь называют ковалентной? Чем можно объяснить направленность ковалентной связи? Как метод валентных связей (ВС) объясняет строение молекулы воды?
Решение:
Связь, осуществляемая за счёт образования электронных пар, в одинаковой мере принадлежащей обоим атомам, называется ковалентной неполярной. Ковалентные связи определённым образом ориентированы в пространстве, т. е. имеют направленность. Причина того, что молекулы могут иметь линейное плоское или какое-либо другое строение, заключается в использовании атомами для образования связей разные орбитали и разное их количество. Молекулы, которые имеют дипольный момент, не являются линейными, а молекулы, у которых нет дипольного момента – линейные.

Молекула воды Н 2 О имеет дипольный момент, значит, она имеет нелинейное строение. В образовании связей между атомами кислорода и водорода участвуют один атом кислорода и два атома водорода. Кислород – цейтральный атом в молекуле воды, и он имеет четыре электронные пары, две пары неподелённые и две – поделённые, которые образованы одним s-электроном и одним р-электроном кислорода. Такая молекула имеет тетраэдрическое строение в центре тетраэдра находится атом кислорода, а по углам тетраэдра два атома водорода и две неподелённые электронные пары кислорода. В такой молекуле угол между связями должен быть равен 109,5 0 . Если бы молекула воды была плоская, то угол НОН должен быть 90 0 . Но рентгеноструктурный анализ молекул воды показывает, что угол НОН равен 104,5 0 . Это объясняет, что молекула воды имеет не линейное форму, а имеет форму искажённого тетраэдра. Объясняется это тем, что атом кислорода претерпевает sp 3 - гибридизацию, когда одна s-орбиталь и три р-орбитали атома кислорода гибридизируются, образуя четыре равноценные sp 3 -гибридные орбитали. Из четырёх sp 3 -гибридных орбиталей две заняты s-орбиталями атома водорода. Разница между значениями валентного угла и тетраэдрическим углом объясняется тем, что отталкивание между неподелёнными электронными парами больше, чем между связывающими.

Полярная ковалентная связь

Задание 62.
Какую ковалентную связь называют полярной? Что служит количественной мерой полярности ковалентной связи? Исходя из значений электроотрицательности атомов соответствующих элементов определите, какая из связей: HCl, IСl, ВгF наиболее полярна.
Решение:
Ковалентная связь, которая образована разными атомами, называется полярной. Например, H - Cl; центр тяжести отрицательного заряда (связанного с электронами) не совпадает с центром тяжести положительного заряда (связанного с зарядом ядра атома). Электронная плотность общих электронов смещена к одному из атомов, имеющего большее значение электроотрицательности, в большей степени. В H: Cl общая электронная пара смещена в сторону наиболее электроотрицательного атома хлора. Полярность связи количественно оценивается дипольным моментом (), который является произведением длины диполя (l) – расстояния между двумя равными по величине и противоположными по знаку зарядами +g и –g на абсолютную величину заряда: = lg . Дипольные моменты НСI, НВг, НI равны, соответственно 1,04; 0,79; 0,38 D. Дипольные моменты молекул обычно измеряют в дебаях (D)* : 1D = 3,33 . 10 -30 Кл . м.

Дипольный момент - величина векторная и направлен по оси диполя от отрицательного заряда к положительному. Дипольный момент связи даёт ценную информацию о поведении молекулы в целом. Наряду с дипольным моментом, для оценки степени полярности связи используют характеристику, называемую электроотрицательностью элемента (ЭО). ЭО – это способность атома притягивать к себе валентные электроны других атомов. Значения ЭО элементов приведены в специальных шкалах (таблицах).

Значения ЭО водорода, хлора, брома, йода, фтора соответственно равны: 2,1; 3,0; 2,8; 2,5; 4,0. Исходя из значений ЭО элементов в соединениях

наиболее полярная связь в молекуле ВгF, так как разница электроотрицательностей между фтором и бромом наибольшая – 1,2 (4,0 – 2,8 = 1,2), чем у HCl и IСl.

Донорно-акцепторная связь

Задание 63.
Какой способ образования ковалентной связи называют донорно-акцепторным? Какие химические связи имеются в ионах NH 4+ и BF 4- ? Укажите донор и акцептор.
Решение:

Донорно-акцепторная связь – это ковалентная связь, в которой обобществлённую пару электронов предоставляет только один из участвующих в связи атомов. При этом один из атомов является донором – поставщиком электронной пары, а другой – акцептором – поставщиком свободной квантовой орбитали.

Катион аммония NH 4+ образуется по донорно-акцепторному механизму:

Он имеет форму правильного тетраэдра:

В ионе аммония каждый атом водорода связан с атомом азота общей электронной парой, одна из которых реализована по донорно-акцепторному механизму. Важно отметить, что связи H - N, образованные по различным механизмам, никаких различий не имеют, т. е. все они равноценны. Донором является атом азота, а акцептором – атом водорода.

Ион BF 4- образуется из BF 3 и иона F-. Этот ион образуется за счёт того, что неподелённая электронная пара иона F- «встраивается» в валентную оболочку атома бора ковалентносвязанной молекулы BF 3:

В ионе BF 4- донором является ион фтора, а акцептором атом бора молекулы BF 3 .

Донорно-акцепторная связь в структурных формулах изображается стрелкой которая направлена от донора к акцептору.

Метод валентных связей (ВС)

Задание 64.
Как метод валентных связей (ВС) объясняет линейное строение молекулы ВеCl 2 и тетраэдрическое СН 4 ?
Решение

а) Представления метода валентных связей позволяют объяснить геометрию многих молекул. Так молекула BeCl2 состоит из одного атома бериллия и двух атомов хлора. Атом бериллия в возбуждённом состоянии имеет один s-электрон и один р-электрон. При образовании BeCl 2 возникают две ковалентные связи. Одна из них должна быть s - p связью, образованная за счёт перекрывания s-облака атома бериллия и р-облака атома хлора, другая (р - р связь) за счёт перекрывания р-облака атома бериллия и р-облака атома хлора.

р - р связь и s - p могут располагаться друг относительно друга под углом, т. е. молекула BeCl 2 должна быть угловой, но точно установлено, что молекула BeCl 2 имеет линейное строение, причём обе - связи равны по энергии и по длине. Для объяснения геометрии молекулы BeCl 2 привлекается концепция гибридизации атомных орбиталей. Суть концепции атомных орбиталей заключается в том, что атомные орбитали могут геометрически видоизменяться и смешиваться друг с другом таким образом, чтобы обеспечить наибольшее перекрывание с орбиталями других атомов и, следовательно, наибольший выигрыш в энергии. Это достигается в том случае, если вместо орбиталей, имеющих разные форму и энергию, появляются одинаковые по форме и энергии гибридные орбитали, представляющие собой линейные комбинации исходных атомных орбиталей. Так в атоме Ве s-орбиталь и р-орбиталь вступают во взаимодействие, их энергии выравниваются и образуются две одинаковые по форме sp-гибридные орбитали. Два образовавшихся sp-гибридных электронных облака имеют одинаковую энергию и ассиметричную форму, которая обеспечивает большее перекрывание р-электронными облаками атома хлора, чем перекрывание с участием чистых негибридизированных s- и р-облаков. Два гибридных sp-облака располагаются относительно друг друга и ядра атома под углом 180 0:

Рис. 1. Трёхатомная молекула BeCl 2

В результате такого расположения гибридных облаков молекула BeCl 2 имеет линейное строение.

б) Молекула СН 4 состоит из одного атома углерода и четырёх атомов водорода, между которыми возникают четыре ковалентные связи. Атом углерода в возбуждённом состоянии имеет четыре неспаренных электрона, один из них на s-орбитали и три на р-орбиталях:

Заполнение внешнего энергетического уровня атома углерода в основном состоянии:

Заполнение внешнего энергетического уровня атома углерода в возбуждённом состоянии:

Из четырёх связей в молекуле СН 4 должны быть одна s - s и три s - p связи, образованные за счёт перекрывания орбиталей атома углерода с s-орбиталью атомов водорода. В результате этого перекрывания должна образоваться связь s - s, отличная от трёх s - p связей длиной и энергией и, расположенная к любой из них под углом около 125 0 . Однако точно установлено, что молекула СН 4 имеет форму тетраэдра с углом между связями 109,5 0 , причём все связи равноценны по длине и энергии. Объяснить тетраэдрическое строение молекулы СН 4 можно sp 3 -гибридизацией. Атом углерода содержит четыре sp 3 -гибридные орбитали, образующиеся в результате линейной комбинации s-орбитали и трёх p-орбиталей. Четыре sp3-гибридные орбитали располагаются друг относительно друга под углом 109,5 0 . Они направлены к вершинам тетраэдра, в центре которого находится ядро атома углерода (рис. 2.).

Рис. 2. Схема строения молекулы СН 4;
Метан, несвязывающих электронных пар нет.

Таким образом, в молекуле СН4 образуются четыре равноценные химические -связи за счёт перекрывания sp3-гибридных орбиталей атома углерода с s-орбиталями атомов углерода.

Образование сигма-связи и пи-связи

Задание 65.
Какую ковалентную связь называют -связью и какую -связью? Разберите на примере строения молекулы азота.
Решение:
Связь, образующаяся за счёт перекрывания вдоль линии, соединяющей два атома, называют -связью (любая простая связь) или «Если перекрывание атомных орбиталей происходит на межъядерной оси, то образуется сигма-связь (-связь). Сигма-связь образуется за счёт перекрывания двух s-орбиталей (s - s связь), одной s- и одной р-орбиталью (s - p связь), двумя р-орбиталями (р - р связь), одной s- и одной d-орбиталью (s - d связь), одной p- и одной d-орбиталью (p - d связь).

Варианты перекрывания атомных орбиталей, приводящие к образованию